
Multidimensional and Multitopological TCAD

with a Generic Scientific Simulation Environment

René Heinzl4, Michael Spevak◦, Philipp Schwaha4, Tibor Grasser4

4Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics

◦Institute for Microelectronics, Technical University Vienna,
Gußhausstraße 27-29/E360, A-1040 Vienna, Austria

E-mail: {heinzl|spevak|schwaha|grasser}@iue.tuwien.ac.at

Abstract

A new approach for solving TCAD problems in a multidimensional
and multitopological way based on a generic scientific simulation
environment is presented. By embedding functional programming,
the environment imposes no restrictions on geometry, topology, or
discretization schemes. Therewith equations and even complete
models can be implemented easily. The generic and functional
programming paradigms and the applicability in the area of TCAD
are presented.

1. Introduction

The scientific computing approach is used to gain understanding
of scientific and engineering problems by the analysis of mathe-
matical models implemented in computer programs and solved by
numerical techniques. Due to the diversity of the mathematical
structures, combined with efficiency considerations, in particular
in three dimensions, the development of high performance simu-
lation software is quite challenging. With modern programming
techniques and new programming paradigms many tasks can be
completely automated, for instance the calculation of different di-
mension dependent data structures.

In the field of TCAD the numerical simulation results are based on
different discretization schemes such as finite differences, finite
elements, and finite volumes. Each of these schemes has its merits
and shortcomings and is therefore more or less suited for different
classes of equations. All of these methods have in common that
they require a proper tessellation of the simulation domain [1], so-
called (unstructured) meshes or (structured) grids. For automatic
mesh adaptation steps different techniques can be used to enhance
the accuracy of the simulation result [2, 3].

Major problems in the development process of software for nu-
merical problems are testing and validation. Errors are often not
obvious to detect. It may already require a lot of experience to de-
cide if a result from a simulation is erroneous or not. If the result
is not correct, it may be due to a great number of reasons, e.g. a
programming bug, a logical error in the program flow, or a badly
chosen parameter. Therefore the availability of already tested and
proven modules can not be underestimated.

These challenges are becoming more difficult to meet, when the
purpose of the software is to validate novel algorithms and com-
plex methods, or to investigate physical phenomena that are not
yet understood.

We have identified the following issues for an environment suitable
for scientific computing:

- Sophisticated realtime visualization possibilities
- High performance
- Abstract solver interface
- Automatic treatment of discretization schemes

To deal with all of these issues, our institute has developed differ-
ent simulation environments, libraries, and applications during the
last decade:

- Wafer-State-Server [4] is a complete geometrical and topolog-
ical library with geometrical algorithms, interpolation mecha-
nism and consistency checks for simplex objects, especially in
three dimensions.

- STAP [5] is based on a set of high-speed simulation programs
for two- and three-dimensional analysis of interconnect struc-
tures. The simulators are based on the finite element method
and can be used for highly accurate capacitance extraction,
resistance calculation, transient electric and coupled electro-
thermal simulations.

- Minimos-NT [6] is a general-purpose semiconductor device
simulator providing steady-state, transient, and small-signal
analysis of arbitrary device structures. In addition, Minimos-
NT offers mixed-mode device/circuit simulation to embed nu-
merically simulated devices in circuits with compact models.

- FEDOS [7] is a finite-element based simulator for oxidation
and diffusion phenomena with integrated mesh adaptation.

However, none of these simulators has proven to be perfect for the
rapid progress in scientific software development. Even the reuse
of simple code parts is difficult, due to the non-generic-library ap-
proach.

Various research groups have put a lot of effort into the develop-
ment of libraries for scientific computing or for sub-problems oc-
curring in scientific computing like Blitz++ [8], Matrix Template
Library (MTL) [9], Boost Graph Library (BGL) [10], CGAL [11],
GrAL [12], Prophet [13] and deal.II [14]. During the evaluation
of these libraries we found that neither of them can completely
cover all the needs arising in the field of TCAD. Some of them can
be used in sub-problems of TCAD, for instance for device sim-
ulation, process simulation, or Monte-Carlo analysis. Other ap-
proaches can be used for highly specialized problem areas such as
finite element on unstructured meshes in three dimensions only.

Based on all these approaches, we have extracted the main con-
cepts from our own simulation tools and have combined them with
the most promising techniques proposed by other groups. The re-

Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems, Mexico, Apr. 26-28, 2006

1-4244-0041-4/06/$20.00 ©2006 IEEE. 173

sult of this work is the generic scientific simulation environment
(GSSE). On the one side, generic library means that each part
of GSSE can be used separately. The complete GSSE is based
on header files only. As a consequence only the required mech-
anisms have to be included without incurring additional depen-
dencies. This approach guarantees a great enhancement for build-
ing libraries in terms of performance. On the other hand, generic
means that all data types are parametrized and can be exchanged
easily, for instance the numerical data type for quantity storage.

For this reasons, GSSE can benefit from two decades of appli-
cation development in the field of numerical simulation and the
concepts from many different approaches.

2. Genericity in GSSE

The approach used for the development of GSSE fundamen-
tally relies on the generic and functional programming paradigm.
Generic programming, started with the development of the STL, is
an especially attractive paradigm for developing libraries for high-
performance computing because it emphasizes generality and ef-
ficiency simultaneously. With this approach libraries can be cou-
pled much more tightly to compilers, allowing libraries to provide
highly-reusable data types and algorithms, as specific optimization
possibilities as well.

The fundamental principle of generic programming is to separate
algorithms from the concrete data structure on which they operate
based on the underlying problem domain concepts, allowing the
algorithms and data structures to interoperate freely.

That is, from a generic point of view, algorithms do not manipulate
concrete data structures directly, but instead operate on abstract
interfaces defined for entire classes of data structures.

Generic programming has proven its usefulness for a class of
mathematically simple, but very important concepts, namely lin-
ear sequences within the STL. Genericity can be explained easily
in terms of the STL:

- Separation of algorithms and data structures: Due to the sep-
aration of algorithms and data structures complete interoper-
ability can be achieved. A single generic function can operate
on many different data structures. The code size can be re-
duced from O(n m) to O(n + m) where n is the number of
algorithms and m is the number of data structures.

- Extension through function objects: The user can adapt and
customize generic algorithms through the use of function ob-
jects.

- Element type parametrization: The best known way of gener-
icity is that its containers are parametrized on the element type.

The main issue we faced was the question whether these con-
cepts could be extended to the complex and interdisciplinary sci-
entific computing approach and especially the numerical solution
of PDEs.

In contrast to the algorithms and data structures found in the STL,
scientific computing shows a lot more diversity with respect to the
needed concepts. The STL is based on linear data sequences like
arrays, lists, and maps. There is always a simple topological con-
nection inside these data sequences. Scientific computing has no
restrictions on topological connections or dimensions. We have
to operate on vertices, edges, rectangles, triangles, cubes, or tetra-
hedra. Therefore we use functional programming to specify all
different types of equations in a dimensionally and topologically
neutral way. This programming paradigm is explained in more
detail in Section 3.3.

The language of choice was and is C++ due to a manifold of rea-
sons. It has been shown [15] that all other languages have sig-
nificant problems with generic implementations in the field of nu-
meric algorithms. Only the multi-paradigm language C++ shows
excellent efficiency capabilities. The implementation of generic
programming concepts in C++ is done with parametric polymor-
phism [10]. Modern programming techniques [8] for C++ guaran-
tee a performance behavior similar to Fortran code.

3. Basic Concepts

Of fundamental importance for a generic scientific simulation en-
vironment like GSSE is the separation of three different concepts:

- Topology means the study of manifolds and their embeddings
like structured or unstructured topologies.

- Geometry means the properties of configurations of geomet-
ric objects, for instance cylinder coordinates for a structured
topology.

- Quantity means all kinds of attributes or properties, which can
be attached to objects (topological or geometrical).

Due to the separation, different mechanism can interact easily, for
instance a cylindrical geometry can be mapped onto a structured
topology.

3.1. Concepts for Topology
Most of the topologies used in TCAD and in scientific computing
are based on two basic types of topology:
Structured topology: A widespread approach to spatial dis-
cretization is to divide the simulation domain into a structured
assembly of quadrilateral cells, with the topological information
being apparent from the fact that each interior vertex has exactly
the same number of neighboring cells. This kind of discretization
is called structured grid or simply grid.
Unstructured topology: The alternative approach is to divide the
computational domain into an unstructured assembly of more or
less arbitrarily formed cells. The topological information can not
be deduced implicitly from the elements and has to be stored ex-
plicitly. This kind of discretization is called unstructured mesh or
simply mesh.

3.2. Concepts for Quantities
In the area of scientific computing and especially in the field of
TCAD the handling of a large number of different quantities is
required. These quantities need to be stored on various objects
(vertices, edges, facets, cells). On the one side, we have developed
a completely generic quantity library which is capable of storing
various mathematical structures in a dense and a sparse format:
scalar values, vector values, matrices, and tensors.
On the other side, we have developed specializations of all of these
mathematical structures to provide high performance calculations,
for instance for small fixed size vectors and matrices.

3.3. Functional Programming
Functional programming is a programming paradigm in which
functions are treated as regular values. Thus, we can have func-
tions that take other functions as parameters which are called
"higher-order" functions. A common feature of functions is that
they can be polymorphic which means that the same function can
be used with arguments of many types. This paradigm is not tied
to a specific language.
The next code snippet shows how the values on an arbitrary
mesh (or grid) can be accumulated in any dimensions. The

174

�����������
	������������ iterator iterates over all vertices which are con-
nected by an edge to the base vertex:

g s s e : : f o r _ e a c h ((∗ s e g i t) . v e r t e x _ b e g i n () ,
(∗ s e g i t) . v e r t e x _ e n d () ,

po t_quan = g s s e : : accumula t e < v e r t e x _ v e r t e x >
(1 . 0 , a rg1 ∗ a rg2) [po t_quan]) ;

4. Applicability

To demonstrate the applicability of GSSE we briefly present some
examples. We want to emphasize the coupling of different con-
cepts used in GSSE to support simple and robust software devel-
opment in the area of scientific computing.
Support for several spatial dimensions is inherently included in
such a way that programs can be written independently of the
spatial dimension without unreasonable penalties on run-time and
memory consumption. The property or quantity treatment is ac-
cessible in an abstract way through function objects and meta pro-
gramming.
With this approach, a very high level of abstraction to all different
kinds of data structures and functionality can be provided. Algo-
rithms can be specified in a dimension independent and data struc-
ture neutral way.
To show the efficiency and applicability we present the Laplace
equation in two and three dimensions, discretized by the finite
volume method and calculated on a bounded domain Ω with the
outer bound Γ3. Two metal contacts are inside the domain Ω with
boundaries Γ1 and Γ2. The problem is described by the following
boundary value problem:

−div(ε grad(Ψ)) = 0 in Ω (1)

Ψ = Ψi on Γ1,2 (2)

Ψ = 0 on Γ3 (3)

The Ψ1,2 are given as boundary values.

Ω

Γ1

Γ2

Γ3

���
�������������������� �
Ω

� �"!$#%�&
'� (�%�*) �+��,'- �%�

The domain is tesselated by cells ci. In two dimension, cells are
triangles and in three dimensions tetrahedra. The discretized prob-
lem is given by:

X

edge

`

Ψj − Ψi

´Aij

dij

= 0 (4)

The next code snippets presents the C++ code for this discretiza-
tion, where fv stands for geometrical factor

Aij

dij
.

Listing 1: The discretization of the Laplace equation

f o r (v e r t e x _ c s
vcs = (∗ s e g i t) . v e r t e x _ b e g i n () ;
vcs != (∗ s e g i t) . v e r t e x _ e n d () ;
++ vcs)

{
/ / boundary e v a l u a t i o n

e q u a t i o n =
(

g s s e : : sum< v e r t e x _ e d g e >
[

g s s e : : d i f f < e d g e _ v e r t e x >[po t_quan] ∗ fv
]

) (∗ vcs) ;

/ / m a t r i x as sembly . .
}

The result of the Laplace equation is presented for two dimensions
in Figure 2.

���
������&.��0/
12�*34���5!6�%37!98:1;� !$#<�=3>���%89!6���5!=)�� !9�%�%!?� ��-�� �
Ψ1 = 1V

���%@

Ψ2 = 0V
��� @�!$#%�A���487��- !?� �%
�)�� !9�%�5!?� ��-'@�� 89!$�B� ,'�5!?� ���C� �D!B1��=@�� �A�%� 8$� ��� 8>�

Different error estimation techniques [2, 3] with automatic mesh
adaptation steps are available within GSSE. Figure 3 shows the
initial error norm with a gradient recovery method. Figure 4 shows
the final error norm after three mesh adaptation steps.

���
������FE��HGI�>8J��- !?� �%
K� �B�����<�%���L�M@��%�N!9�O!$#%�P8J) �5!?� ��-Q@�� 8?3%���7!?� R>�5!?� ���
1;� !$#%���5!A���48J#<���7SI�%�%���%�5!4�0/;#%�&�%�L�+���"(��- � �48D�%����@�� 89!$�B� ,'�5!9�4@N,��7!B1��4� �
�%T�U�1D#�� 3%#*�A�>���%8��<#��
�#*- �'3>��-��%�L�����2�%���L�V���%@W�'U�1D#�� 3 #*�A�>���%8��<- �51
- ��3>��-��%�L�����0�%���B�*�

The code snippet from Listing 1 can be used for three dimensional
structures without modification. The simulation results for three
dimensions are presented in Figure 5. An enlarged view of the
critical meshed tip between the contacts can be seen in Figure 6.
The corresponding isopoential areas are presented in Figure 7.

175

���
����������;G �4@��%34�>@W�%�L�����0�%���L�V�>� !9�%�"!$#����4�<���48J#C�%@'��)5!6�5!?� ����86!9�%)%85�

���
���������� /;# � 8$�����D
��4�����7!$���&�%8;� �A!B1��C@�� ���%�%8$� ���%8Q1�� !$#&��34���%86!6���%!
)�� !9�%�5!?� ��-2� �

Ψ1 = 1V
���%@

Ψ2 = 0V
��� @N!$#%�N���48J��- !?� �%
)�� !9� �5!?� ��-

@�� 89!$�B� ,��5!?� ��� � �=!$#����4�C@�� ���%�%8J� ���%85�

���
����������	�
��- � �+
��>@=(�� �71O� �
!$#%� 3%�B� !?� 35��-��A�487#%�4@�!?�):89!$�L�%34!$������,��7!B1��4�%�
!$# �=34���5!6�%37!985�

���
�������
���� 86��)�� !9�%�5!?� ��-�87���+�B�%34�48;,��7!B1��4� �:!$#%��3>���5!6�%37!982� �I!$#%�:���48J�'- !?� �

)�� !9�%�5!?� ��-�@�� 89!$�B� ,'�5!?� �����

5. Conclusion

We have presented the GSSE with generic and functional program-
ming paradigms and the applicability in a dimensional and topo-
logical neutral way. Therewith code elements and models can be
implemented for different dimensions and topologies at once. As a
consequence the generic concepts can be extended to the complex
and interdisciplinary scientific computing approach and especially
to the numerical solution of PDEs.

6.References
[1] R. Heinzl and T. Grasser, “Generalized Comprehensive Ap-

proach for Robust Three-Dimensional Mesh Generation for
TCAD,” in Proc. SISPAD, (Kobe, Japan), pp. 211–214, Sept.
2005.

[2] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser, “A Novel
Technique for Coupling Three-Dimensional Mesh Adapta-
tion with an A Posteriori Error Estimator,” in 2005 PhD Re-
search in Microelectronics and Electronics (PRIME 2005),
(Lausanne, Switzerland), pp. 175–178, IEEE, July 25-28
2005.

[3] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser, “Cou-
pling Three-Dimensional Mesh Adaptation with an A Poste-
riori Error Estimator,” in Proc. SISPAD, (Kobe, Japan), Sept.
2005.

[4] A. Hössinger, R. Minixhofer, and S. Selberherr, “Full Three-
Dimensional Analysis of a Non-Volatile Memory Cell,” in
Proc. SISPAD, (Munich, Germany), pp. 129–132, Sept.
2004.

[5] R. Sabelka and S. Selberherr, “A Finite Element Simulator
for Three-Dimensional Analysis of Interconnect Structures,”
vol. 32, no. 2, pp. 163–171, 2001.

[6] MINIMOS-NT 2.1 User’s Guide. Institut für Mikroelek-
tronik, Technische Universität Wien, Austria, 2004.
http://www.iue.tuwien.ac.at/software/minimos-nt.

[7] H. Ceric, Numerical Techniques in Interconnect and Pro-
cess Simulation. Dissertation, Technische Universität Wien,
2004.

[8] T. L. Veldhuizen, “C++ Templates as Partial Evaluation,” in
Proc. of PEPM’99., pp. 13–18, University of Aarhus, Dept.
of Computer Science, Jan. 1999.

[9] J. G. Siek and A. Lumsdaine, “The Matrix Template Library:
A Unifying Framework for Numerical Linear Algebra,” in
ECOOP Workshops, pp. 466–467, 1998.

[10] J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Li-
brary: User Guide and Reference Manual. Addison-Wesley,
2002.

[11] A. Fabri, “CGAL- The Computational
Geometry Algorithm Library,”, 2001.
��'�����������������'�����������$���������! #"
�$��%�&#
('! �)	�+*��#,-) .

[12] G. Berti, “GrAL - The Grid Algorithms Library,” in ICCS
’02: Proceedings of the International Conference on Com-
putational Science-Part III, (London, UK), pp. 745–754,
Springer-Verlag, 2002.

[13] C. S. Rafferty and R. K. Smith, “Solving Partial Differen-
tial Equations with the Prophet Simulator,” Bell Laborato-
ries, Lucent Technologies, 1996.

[14] ���. !)	��/�/ Differential Equations Analysis Library, Technical
Reference. *
������01���#2�2�23�4���� !)!���5�16���' .

[15] R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock in
Proc. of the 18th Annual ACM SIGPLAN, (New York, NY,
USA), pp. 115–134, ACM Press, 2003.

176

