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Abstract. A generic scientific simulation environment is presented which
imposes no restriction in topological, dimensional, and functional issues.
Therewith complete discretization schemes like finite volumes or finite
elements can be expressed directly in C++. The new approaches as well
as the applicability and the performance related to well established sim-
ulators are highlighted.

1 Introduction

In the last decades different libraries and software environments have been de-
veloped to handle various areas in the field of scientific computing. Due to the
diversity of the mathematical structures, combined with efficiency considera-
tions, in particular in three dimensions, the development of high performance
simulation software is quite challenging. These challenges are becoming more dif-
ficult to meet, when the purpose of the software is to validate novel algorithms
and complex methods, or to investigate physical phenomena that are not yet
fully understood.

High performance computations have turned the attention especially to C++
since Blitz4++ has shown that the run-time behavior is comparable to Fortran [1].
On the other hand different programming paradigms, some, such as functional
programming, only available through libraries [2, 3], are well supported.

2 Motivation

Different library approaches [4-8] focus on topics like expression templates, high
performance matrix treatment, and finite element discretization. An analysis
reveals that so far no approach can successfully deal with the mathematical
formulation of physical phenomena in a broad regime directly in C++. As a
consequence we have extracted the most promising approaches from all of these
approaches. The base concept of separating topology and quantity is based on
the grid algorithm library (GrAL) [9].

The result of this analysis is a generic scientific simulation environment
(GSSE) which does not impose any restriction on topological treatment or func-
tional description with an overall high performance.



3 Owur Approach

To support arbitrary topological traversal mechanisms and functional description
capabilities a layered concept structure has been developed (Figure 1).
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Fig. 1. Complete conceptual view of GSSE with abstract interfaces.

The bottom layer represents the concepts for topological information and
quantity storage, whereas the second layer provides the separation of traversion
and quantity access [10] which is called cursor and property map concept. The
functional layer decouples the underlying concepts from the top layer which is
based on the Boost Phoenix library [3] with several enhancements to support
different discretization schemes.

A functional encapsulation is provided for the property map to create uniform
access, which is called quantity accessor mechanism (e.g. the pot_quan usage
in the following listing). To complete our environment abstract interfaces for
(realtime) visualization [11] and solver integration [12] have been developed as
well as three dimensional unstructured meshing issues [13].

4 Applicability

Due to space considerations we demonstrate the applicability of GSSE with a
simple example only. The Laplace equation is used and discretized by the finite
volume method and calculated on a bounded domain €2 (Figure 2). The problem
is described by the following boundary value problem:

div(e grad(¥)) =0 in Q (1)
U=y, on FLQ (2)
opv =0 onI's (3)

The next code snippets presents the corresponding C++ code.

for (vertex-cs vecs = (xsegit).vertex_begin ();
ves != (xsegit).vertex_end (); ++ves)
{

equation= ( gsse::sum<vertex-edge>

gsse :: diff <edge-vertex >[pot_quan] * fv

] )Y(*ves);

The potential distribution in the domain {2 for two and three dimensions can
be observed in Figure 2. Different error estimation techniques [14] with automatic
mesh adaptation steps are available in GSSE which are shown in Figure 3.




5 Performance

To achieve overall high performance we use template meta-programming to de-
rive all cursor data types at compile-time. The run-time behaviour is analysed
with a simple vector addition Ay = Ay + Az + Az, which is used in the finite
element assembly with three operations (two additions and one assignment) in
Figure 4 in relation to Fortran 77 code. The y-axes depict million operations per
seconds. The legend text ET means a simple expression template mechanism [15],
FP stands for our functional approach, Blitz++ for the corresponding library,
and naive C++ means a simple STL vector class with temporary objects.

For an overall comparison of our approach we compare the system matrix
assembly of a finite element discretization for the Laplace equation in assembled
equations per seconds in Figure 5. The inhouse developed smart analysis pro-
grams (SAP) [16] are used as a reference. This package is designed specifically
for highly accurate analysis of multi-layer VLSI interconnect structures with an

overall high performance.
All benchmarks were performed on a Pentium4 2.8 GHz, 2 GB RAM with
GCC 4.0.2.

Notes and Comments. To show the applicability of our approach the Laplace,
diffusion, and drift-diffusion equations with the finite volume and the Laplace
and diffusion equations with finite element discretization schemes in arbitrary di-
mensions and on structured as well as on unstructured meshes are implemented.
As can be seen the run-time speed of C++ code does not contradict to high
expressiveness.
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Fig. 2. Two contacts with a constant potential of ¥; = 1V and ¥y = 0V and the
resulting potential distribution in two and three dimensions.
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Fig. 3. Left: resulting error norm without mesh refinement. Right: error norm after
three mesh adaption steps. The error values are distributed between 10, which means
a high local error norm and 0, which means a low local error norm.
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Fig. 4. Matrix addition benchmark Fig.5. Finite element assembly
with different approaches in C++ benchmark for SAP and GSSE
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