A Generic Scientific Simulation Environment for
Multidimensional Simulation in the Area of TCAD

René Heinzl®, Michael Spevak®, Philipp Schwaha®, Tibor Grasser®

4 Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics
°Institute for Microelectronics, Technical University Vienna,
GuBhausstrafie 27-29/E360, A-1040 Vienna, Austria
E-mail: {heinzl|spevak|schwaha|grasser}@Qiue.tuwien.ac.at

ABSTRACT

A generic environment for process and device simula-
tion and general scientific computing is presented that
imposes no restrictions on dimension or discretization
schemes. Equations and even complete models can
be implemented easily without any dimensional con-
straints. The main paradigms, the generic approach,
and the applicability to the area of TCAD are presented
with multidimensional discretization schemes.

Keywords: scientific computing, high performance
computing, process and device simulation

1. INTRODUCTION

In the field of TCAD the numerical simulation results
are based on different discretization schemes such as
finite differences, finite elements, and finite volumes.
Each of these schemes has its merits and shortcomings
and is therefore more or less suited for different classes
of equations. All of these methods have in common that
they require a proper tessellation and adaptation of the
simulation domain [1], so-called unstructured meshes or
structured grids.

Due to the diversity of the discretization schemes, in
particular in three dimensions, the development of sim-
ulation software is quite challenging. Another circum-
stance, which complicates the software development pro-
cess is that the problems are specified in different dimen-
sions. Some problems can be reduced to one dimension,
other problems can be solved in two dimensions, and
due to the ongoing development of new devices, some
problems have to be solved in three dimension. Partic-
ularly new three dimensional devices like high voltage
devices can be simulated in three dimensions only.

To deal with all of these issues, our institute has devel-
oped different simulation environments, libraries, and
applications during the last decade. The Wafer-State-
Server [2] is a geometrical and topological library with
geometrical algorithms, fast point location mechanisms,

interpolation mechanisms and consistency checks for
simplex objects. It was developed especially for three
dimensions in C++. STAP [3] is based on a set of
high-speed simulation programs for two- and three-
dimensional analysis of interconnect structures. The
simulators are based on the finite element method and
can be used for highly accurate capacitance extrac-
tion, resistance calculation, transient electric and cou-
pled electro-thermal simulations. Minimos-NT [4] is
a general-purpose semiconductor device simulator pro-
viding steady-state, transient, and small-signal analysis
of arbitrary device structures. In addition, Minimos-
NT offers mixed-mode device/circuit simulation to em-
bed numerically simulated devices in circuits with com-
pact models. FEDOS [5] is a finite-element based sim-
ulator for oxidation and diffusion phenomena with in-
tegrated mesh adaptation (refinement and hierarchical
coarsement) mechanism, implemented in C++. How-
ever, none of these libraries or simulators have proven
to be perfect for the rapid progress in scientific software
development. Even the reuse of simple code parts is
difficult, due to the non-generic-library approach.

Other research groups have put a lot of effort into the de-
velopment of libraries for scientific computing or for sub-
problems occurring in scientific computing. The most
important representatives are:

- Blitz++ [6] implements basic n-dimensional ar-
rays along with algebraic operations on them.
This library has introduced new programming ap-
proaches, mainly expression templates. With these
techniques, which are not limited to this library,
run-time speed comparable to Fortran can be
achieved.

- The Matrix Template Library (MTL) [7] con-
tains data-structures for dense and sparse matri-
ces, as well as generic low-level algorithms (BLAS-
functionality) and a generic LU-factorization. All
interfaces to data structures are implemented in a
generic way with high overall performance.

526 NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Vol. 3, 2006

- Boost Graph Library (BGL) [8] is a high-speed,
container-based approach to graph relationships
with a generic interface. Therewith graph algo-
rithms are implemented generically.

- CGAL [9] implements generic classes and proce-
dures for geometric computing with generic pro-
gramming techniques (e.g. iterator access).

- GrAL [10] introduces the abstraction of mesh ac-
cess mechanisms to meshes in a way similar to the
C++ STL [11]. This library can be seen as a direct
predecessor to our own approach.

During the evaluation of these libraries we found that
neither of them can completely cover all the needs aris-
ing in the field of TCAD. Some of them can be used in
sub-problems of TCAD, for instance for device simula-
tion, process simulation, or Monte-Carlo analysis. But
no library or approach can cover the complete spec-
trum for different discretization schemes. abstract ac-
cess to the objects without any For that reasons, we ex-
tracted the main concepts from our own simulation tools
and combined them with the most promising techniques
proposed by other groups. The result of this work is
a generic scientific simulation environment (GSSE) for
multidimensional simulation in the area of TCAD.

The language of our choice is C++ due to a manifold
of reasons. It has been shown [12] that all other lan-
guages have significant problems with generic implemen-
tations in the field of numeric algorithms. The imple-
mentation of generic programming concepts in C++ is
done with parametric polymorphism [8] with features
like template specialization, partial specialization, par-
tial ordering of function templates. These features also
allow techniques like meta-programming [13] and guar-
antee a performance behavior similar to Fortran code
[6]. All of these techniques are currently only available
in C++ due to its multi-paradigm approach [12].

2. CONCEPTS FOR MULTIDIMENSIONAL
TREATMENT

To establish a multidimensional simulation approach, we
have developed different concepts which are described
in the next sections. To support dimensional indepen-
dence, a generic topological traversal is of utmost perfor-
mance, which means that the elements of a topological
space (e.g. triangles, tetrahedra) must be accessible in
a data structure neutral way. Algorithms or functions
should not interact directly with elements. This con-
cept of separating the access mechanism between data
structures and algorithms is called iterator concept. We
explain this concept in more detail in Section 2.3.

2.1 Vertex and Cell Concepts

A simulation domain D which is part of a space R"™
where 0 < n < o0 is described by vertices (0-dimensional

objects) and cells (n-dimensional objects) and the topo-
logical information about the connections. Dimensions
higher than 3 are used for example as the phase space
in Boltzmann equation.

The minimal topological information that has to be
stored is wvertex on cell connections. For an efficient
traversion through all sub-dimensions, we store the cell
on vertex information as well.

2.2 Quantity Concept

Quantities mean all kinds of attributes or properties,
which can be attached to objects (topological or geo-
metrical). In the area of scientific computing and espe-
cially in the field of TCAD the handling of a large num-
ber of different quantities is required. These quantities
need to be stored on various objects (vertices, edges,
facets, cells). On the one hand, we have developed a
completely generic quantity library which is capable of
storing various mathematical structures in a dense and
a sparse format: scalar values, vector values, matrices,
and tensors. On the other hand, we have developed
specializations of all of these mathematical structures
to provide high performance calculations, for instance
for small fixed size vectors and matrices.

2.3 Iterator/Cursor and Property Map
In scientific computing a lot of data can be associated
with objects. The basic iterator concept [11] can only
handle one associated data item due to the linear data
sequence concept of the STL. This concept is not suit-
able for a multidimensional scientific computing envi-
ronment. Therefore we have separated the traversion of
the topology from the access to the properties (similar to
[14]) or quantities. To support a wide variety of traver-
sion mechanisms, there are several hierarchies of cursors
(based on [10], but implemented quite differently):

- Base cursors: vertex, edge, facet, cell cursor

- Adjacency cursors: Vertex to vertex

- Incidency cursors: Cell on vertex

- Special cursors: Boundary vertex cursor
Like the iterator concept in the STL, the cursor concept
of the GSSE is the glue between the data structures
(meshes and grids) and the algorithms. Therewith algo-
rithms can be specified multi-dimensionally. In GSSE,
all needed types of cursors are generated at compile time
for each dimension and topology to avoid run-time over-
head for any dimension or any topology.
The access to quantities is given by several property
maps. The geometrical coordinates and the associated
data are kept in different property maps.

2.4 Abstract Interfaces

For all visualization tasks, we have developed an ab-
stract visualization interface. For now, IBM’s data ex-

NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Vol. 3, 2006 527

plorer [15] can be used due to its multi-dimensional and
multi-topological visualization capabilities. We have ex-
tended it by an additional real-time visualization mod-
ule.

Next, we have developed an abstract solver interface. At
the moment, we use modules from the Trilinos project
[16] in conjunction with LAM/MPI [17], which provide
high performance on small single CPU clusters to large
SMP machines with high speed networks, even in het-
erogeneous environments.

3. EXAMPLES AND RESULTS

In this section the applicability of GSSE is demonstrated
with resept to an example. We emphasize the coupling
of different concepts used in GSSE to support simple
and robust software development in the area of scientific
computing.

Support for several spatial dimensions is inherently in-
cluded in such a way that programs can be written in-
dependently of the spatial dimension without penalties
on run-time and memory consumption due to the tem-
plate meta-programming technique. The key feature
to achieve this level of abstraction is the cursor con-
cept which encapsulate all topological data structure
elements. Algorithms can be specified in a dimension
neutral way.

3.1 Multidimensional Laplace Code

The applicability is shown with the Laplace equa-
tion within an arbitrary dimensional formulation, dis-
cretized by the finite volume method and calculated on
a bounded domain 2. Dirichlet boundary conditions
Uy o are given on I'y and I's.

Q

Iy Iy

Figure 1: Domain of the given problem

The domain is tesselated by cells ¢;. In two dimensions,
cells are triangles and in three dimensions tetrahedra.
The problem is described by the boundary value prob-
lem:

—div(e grad(¥)) =0 in Q (1)
U = \IJZ on FLQ (2)
The discretized problem is given by:
Aij
> (W -w)=2 =0 in Q, (3)
edge

where (\Il j —\Ili) stands for the difference of the potential
for each vertex pair v;, v; on an edge (Figure 2).

Figure 2: A two dimensional triangle patch with the
corresponding dual Voronoi graph (blue)

To avoid the complex syntax from C++ code we use a
transformation layer to remove the last burden of learn-
ing a complex language for the task of specifying phys-
ical problems. This meta language (Listing 1) is very
near to the real syntax of our approach (Listing 2).

Listing 1: The discretization of the Laplace equation
(meta language)

model LaplaceEquationFVM

{

assemble

{

linearized _equation equ;

eqn=sum (V—>E) [diff (E=>V)[pot_quan] * A/d];

Listing 2: The discretization of the Laplace equation

(C++)

// boundary evaluation

equ=

(

gsse ::sum<vertex_edge>

[

gsse :: diff <edge_vertex >[pot_quan] x A/d

]

) (vertex);

// matriz assembly

Here an equation object equ is specified functionally,
which means, that a complete matrix line is covered
by the object. The gsse::sum and gsse:diff are ex-
tensions to the Boost phoenix library to support our
cursor concept. Each of these algorithms is specialized
with a cursor to access different traversal mechanism
(vertex_edge means that the traversal performed over
all edges attached to a vertex, edge _vertex means, that
the incident vertices to an edge are used).

528 NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Vol. 3, 2006

Figure 3 presents the result of a two-dimensional simu-
lation with a sparse mesh, and Figure 4 the same simu-
lation with a dense mesh. In Figure 5 and 6 the results
within three dimensions can be seen.

1V

ov

Figure 3: Potential distribution for a two dimensional
structure with a sparse mesh.

1V

v ov

Figure 4: Potential distribution for a two dimensional
structure with a dense mesh.

1V

ov
Figure 5: Potential distribution for a corresponding
three dimensional structure with a sparse mesh.

Y

ov
Figure 6: Potential distribution for a corresponding
three dimensional structure with a dense mesh.

4. CONCLUSION

We have developed a generic scientific simulation envi-
ronment with the separation of topology, quantity, and
geometry. With our cursor concept, problems can be
specified in a dimensional neutral way. Finally we have
presented the applicability of our approach with an ex-
ample from interconnect simulation.

(1]
(2]
3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

6. REFERENCES

R. Heinzl and T. Grasser, in Proc. SISPAD (Kobe,
Japan, 2005), pp. 211-214.

A. Hossinger, R. Minixhofer, and S. Selberherr, in Proc.
SISPAD (Munich, Germany, 2004), pp. 129-132.

R. Sabelka and S. Selberherr, in Proc. Intl. Interconnect
Technology Conference (Burlingame, California, 1998),
pp. 250-252.

IuE, MINIMOS-NT 2.1 User’s Guide, Institut fiir
Mikroelektronik, Technische Universitdt Wien, Austria,
2004, http://www.iue.tuwien.ac.at/software/minimos-
nt.

H. Ceric, Dissertation, Technische Universitdt Wien,
2004.

T. L. Veldhuizen, in Proc. of PEPM’99. (University of
Aarhus, Dept. of Computer Science, 1999), pp. 13-18.
J. G. Siek and A. Lumsdaine, in ECOOP Workshops
(1998), pp. 466—467.

J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph
Library: User Guide and Reference Manual (Addison-
Wesley, 2002).

A. Fabri, CGAL- The Computational
Geometry Algorithm Library, 2001,
citeseer.ist.psu.edu/fabriOlcgal.html.

G. Berti, in ICCS ’02: Proceedings of the Interna-
tional Conference on Computational Science-Part IIT
(Springer-Verlag, London, UK, 2002), pp. 745-754.

M. H. Austern, Generic Programming and the STL:
Using and Eztending the C++ Standard Template Li-
brary (Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998).

R. Garcia et al., in Proc. of the 18th Annual ACM SIG-
PLAN (ACM Press, New York, NY, USA, 2003), pp.
115-134.

D. Abrahams and A. Gurtovoy, C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series)
(Addison-Wesley Professional, 2004).

D. Abrahams, J. Siek, and T. Witt, Technical Report
No. N1477 03-0060, ISO/IEC JTC 1, Information Tech-
nology, Subcommittee SC 22, Programming Language
C++ (unpublished).

IBM wisualization Data Ezplorer, 3rd ed., IBM Corpo-
ration, Yorktown Heights, NY, USA, 1993.

M. Heroux et al., Technical Report No. SAND2003-
2927, Sandia National Laboratories (unpublished).

J. M. Squyres and A. Lumsdaine, in Proceedings, 10th
European PVM/MPI Users’ Group Meeting, No. 2840
in Lecture Notes in Computer Science (Springer-Verlag,
Venice, Italy, 2003), pp. 379-387.

NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Val. 3, 2006 529

