
High Performance Process and Device Simulation
with a Generic Environment

René Heinzl△, Michael Spevak◦, Philipp Schwaha△, Tibor Grasser△

△Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics

◦Institute for Microelectronics, Technical University Vienna,
Gußhausstraße 27-29/E360, A-1040 Vienna, Austria

E-mail: {heinzl|spevak|schwaha|grasser}@iue.tuwien.ac.at

Abstract

A high performance generic environment for TCAD and general
scientific computing is presented that imposes no restrictions on
geometry, topology or discretization schemes, so that equations
and even complete models can easily be implemented. The generic
programming approach with the corresponding base concepts, and
the applicability in the area of TCAD with the performance behav-
ior is presented.

1. Introduction

The scientific computing approach is used to gain an understand-
ing of scientific and engineering problems by the analysis ofmath-
ematical models implemented in computer programs and solved
by numerical solution techniques. Numerical methods employed
in discretization, interpolation, or optimization make use of highly
nonlinear functionsfx(x) which can consist of several coupled
differential equations. Due to the great diversity of physical phe-
nomena, which can be described by differential equations ofcon-
siderable complexity, present in different areas of scientific com-
puting, the development of several discretization schemes[1] has
been necessary in order to best model the underlying physicsand
to accommodate the mathematical peculiarities of each of these
equations while transferring them to the discrete world of digi-
tal computing. As a consequence the development of simulation
software is quite challenging, especially with high performance
requirements.
In the field of TCAD, as in many others, the numerical simulation
results are based on different discretization schemes suchas fi-
nite differences, finite elements, and finite volumes. Each of these
schemes has its merits and shortcomings and is therefore more or
less suited for different classes of equations. All of thesemeth-
ods have in common that they require a proper tessellation and
adaption of the simulation domain [2, 3], so-called (unstructured)
meshes or (structured) grids.
To deal with all of these issues, our institute has developeddiffer-
ent simulation environments, libraries, and applicationsin the last
decade such as the Wafer-State-Server [4], STAP [5], Minimos-NT
[6], FEDOS [7]. A more detailed overview of these simulatorsis
given in [8].

2. Generic Programming

Generic programming extends the interface capabilities ofthe ob-
ject oriented programming approach in the direction to concept
based programming. With its parametric polymorphism, the data
type [9] must support the required concepts only. The main focus
of programming with concepts does not lie in the actual source
code. This programming paradigm focuses on the developmentof
concepts, which means that the user can easily add new data types

or classes, which must only support the required concepts. In C++
parametric polymorphism is provided by the template mechanism
which offers an overall high performance due to separate optimiza-
tion possibilities. Therewith, the generic programming paradigm
establishes homogeneous interfaces between algorithms and data
structures without subtyping polymorphism (class hierarchies).
Within our approach, three different basic concept have been sepa-
rated. Thetopology, which means the study of manifolds and their
embeddings like structured or unstructured topologies whereas the
geometrymeans the properties of configurations of geometric ob-
jects, e.g. cylinder coordinates for a structured topology. Finally,
thequantity extends the geometry concept to all kinds of attributes
or properties, which can be attached to objects (topological or ge-
ometrical).
To reflect these concepts, the implementation is heavily based on
the type parameterization, which means the static or parametric
polymorphism of generic programming. In our environment, there
are different levels of type parameterization:

- Objects (vertex, cell)
All different kinds of vertices (structured, unstructured) are im-
plemented with only one generic vertex class. With the special-
ization mechanism, the compiler generates the suitable vertex
class based on the base type of topology. Therewith the code
maintenance is reduced to a minimum.

- Iterators (derived iterators)
We have developed a complete iterator hierarchy. On the one
hand side, there are different iterator categories (forward, bidi-
rectional, random access). On the other side there are only two
important iterators for each base topology. The cell_on_vertex
and the vertex_on_cell iterator. All other iterators can bede-
rived from these two by the compiler.

- Handles, geometrical coordinates, quantity storage
The handles are parameterized with the counter data type,
whereas the geometry is parameterized with the numeric type
of coordinate storage. The quantity storage is parameterized
with the numeric type for quantity element storage.

Next to the parametrization approach, functional programming
techniques are available in C++ such as Lambda (unnamed func-
tions [10]) and Currying (partial function evaluation [11]). To
highlight the behavior of the functional programming paradigm,
we present an example based on the C++ STL: the usage of generic
algorithms on arbitrary data structures. The next sample demon-
strates the output from a generic container:

s t d : : vec to r <i n t > d a t a ;
copy (d a t a . beg in () , d a t a . end () ,

o s t r e a m _ i t e r a t o r <i n t >(s t d : : cout , " \ n ")) ;

The complexity is hidden in the behavior of the third argument to
the generic copy algorithm. With the functional approach wecan
write things more intuitively:

f o r _ e a c h (d a t a . beg in () , d a t a . end () ,
s t d : : cou t << arg1 << ’ \ n ’) ;

In the next section we present the applicability of the generic and
functional programming in the field of scientific computing.

2.1. Concepts for Topology
Most of the used topologies in TCAD and in scientific computing
are based on two basic types of topology:
Structured topology: A widespread approach to spatial dis-
cretization is to divide the simulation domain into a structured
assembly of quadrilateral cells, with the topological information
being apparent from the fact that each interior vertex has exactly
the same number of neighboring cells. This kind of discretization
is calledstructured gridor simplygrid. The next figure represents
an example of this type of mesh.

Unstructured topology: The alternative approach is to divide the
computational domain into an unstructured assembly of moreor
less arbitrarily formed cells. The topological information can not
be deduced implicitly from the elements and has to be stored ex-
plicitly. This kind of discretization is calledunstructured meshor
simply meshand can be seen in the next figure for the two dimen-
sional case.

2.2. Concepts for Quantities
Due to the handling of a large number of different quantities, we
have developed different concepts for all different kinds of quan-
tities. These quantities need to be stored on various objects (ver-
tices, edges, facets, cells). On the one side, we have developed a
completely generic quantity library which is capable of storing var-
ious mathematical structures in a dense and a sparse format:scalar
values, vector values, matrices, and tensors. On the other side, we
have developed specializations of all of these mathematical struc-
tures to provide high performance calculations, for instance for
small fixed size vectors and matrices.

3. Applicability of our Approach

To demonstrate the applicability of our approach we briefly present
some examples. We want to emphasize the coupling of different
concepts used in our approach to support simple and robust soft-
ware development in the area of scientific computing.
Support for several spatial dimensions is inherently included in a
way that programs can be written independently of the space di-
mension without unreasonable penalties on run-time and memory
consumption. The key feature to achieve this abstraction isthe
iterator/cursor concept, which can be used like this:

v e r t e x _ c u r s o r vcs = segment . v e r t e x _ b e g i n () ;
whi le (vcs . v a l i d ())

{
segment . s t o r e _ q u a n t i t y (∗ vcs ,

quant i t y_name , va lue) ;
++ vcs ;

}

The property or quantity treatment is accessible in an abstract way
through function objects. The next few code lines print all quanti-
ties found on vertices. Note the dimensional and topological inde-
pendence:

s t d : : s t r i n g key_pot = " B u i l t I n P o t e n t i a l " ;
quan_t pot_quan =

s c a l a r _ q u a n (∗ s e g i t , key_pot) ;

f o r _ e a c h ((∗ s e g i t) . v e r t e x _ b e g i n () ,
(∗ s e g i t) . v e r t e x _ e n d () ,
s t d : : cou t << pot_quan << s t d : : end l) ;

With this approach, a very high level of abstraction from alldif-
ferent kinds of data structures and functionality can be provided.
Algorithms can be specified in a dimension independent and data
structure neutral way. This enables the opportunity for a mathe-
matical layer where functions can be specified in C++ directly. To
show the applicability of this approach we investigate the Laplace
equation:

X

edge vertex

`

Ψj − Ψi

´Aij

dij

= 0

wherei stands for thei-th vertex andj for the adjacent vertex tra-
versed over the corresponding edge. The equation can be specified
in the following way in C++ with the support or our approach:

Laplace finite volume discretization

f o r (v i t = c o n t a i n e r . v e r t e x _ b e g i n () ;
v i t != c o n t a i n e r . v e r t e x _ e n d () ; ++ v i t)

{
e q u a t i o n =

(sum< ver tex_edge >
[

d i f f < edge_ver tex >[po t]
] ∗ A / d

) (∗ v i t) ;
}

The complete equation is examined at compile-time to construct an
optimized means to obtain the needed data. The complex resulting
from this mapping is completed by specifying the currently iter-
ated vertex at run-time. In other words, the compiler will always
generate the most suitable code for each topology, dimension, and
equation. Therewith an overall high performance can be achieved.
This algorithm can be used for 1D, 2D, and 3D structured and un-
structured meshes.

4. Examples and Results

In this section two different examples are analyzed. First,an inter-
connect simulation is demonstrated where the current distribution
within an interconnect line creates a selfheating effect. This sim-
ulation is based on a finite element discretization of the Laplace
equation. Secondly, we analyze automatic mesh adaptation by an
a posteriori error estimators, which is a major issue in process and
device simulation. The error estimation techniques are presented
in detail in [12].

4.1.Interconnect Simulation
The temperature distribution caused by self-heating effects in an
interconnect line is depicted in Figure 1. The equations used are
given in [13, 14]. To illustrate the influence of the problem size
on the overall system matrix assembly step, we investigate our test
structure with different refined meshes. The run-time performance
is compared to one of our fastest simulation engines available [5].
As a result, no relevant run-time (Figure 2) as well as solution
differences were obtained.

Figure 1. Temperature distribution due to self-heating in a taperedinteronnet line with ylindrial vias.
10

3
10

4
10

5
10

6

Number of vertices

10
4

10
5

E
qu

/s

Our approach

SAP

Figure 2. Comparison of our approah with a highly speialized�nite element pakage on uniformly re�ned meshes.
4.2.Adaptive Mesh Generation
We use an simple structure (Figure 3) to demonstrate the error es-
timation and adaptive meshing procedure. Therefore the Laplace
equation is solved in the SiO2 layer around the contacts. The main
aim of this simulation is to determine the capacitance between the
two electrodes both very precisely and efficiently. To calculate
the complete example a solver interface [15], as well as a realtime
visualization interface [16] is implemented in our genericenviron-
ment. We start with an initial mesh and increase the point density
in regions where an error estimator returns high values. Then we
solve the Laplace equation again and re-estimate the error on the

new structure. We do this iteratively until we have only elements
with an error below a certain error bound.

Figure 3. The initial struture with two ontats (blue: 1 V, red: 0V) and surrounding oxide (transparent)
Figure 4. Initial alulation with high error values (red) and lowerror values (blue) for the example struture with 1000 points.
Figure 5. Error distribution after two steps alulation for the ex-ample struture with 1500 points.
The next diagram presents the number of elements in each error
class, whereas error class 1 stands for a small error and error class 7
for a big error. As can be clearly observed, the number of elements
in error class 1 increases and the number of elements in the other
error classes drops due to our mesh adaptation technique.

1 2 3 4 5 6 7

Initial error
Final adapation

66 %

33 %

0 %

5. Runtime Efficiency

To investigate the abstraction penalty of our generic code we an-
alyze a simple C implementation without any generic overhead to
our generic environment. The abstraction penalty means theratio
of the execution time resulting from code which takes advantage of
certain abstractions, and the execution time obtained froma lower-
level code which has equivalent functionality but does not use the
abstractions. The next code snippet presents the C source code for
a three dimensional object traversion:

C approach for a simple traversal over all vertices

f o r (i 3 = 0 ; i 3 < s i z e d 3 ; i 3 ++)
f o r (i 2 = 0 ; i 2 < s i z e d 2 ; i 2 ++)

f o r (i 1 = 0 ; i 1 < s i z e d 1 ; i 1 ++)
{

/ / o p e r a t i o n s
/ / use i1 , i2 , i 3

}

Our approach for the traversal over all vertices

v i t 1 = c o n t a i n e r . v e r t e x _ b e g i n () ;
v i t 2 = c o n t a i n e r . v e r t e x _ e n d () ;
f o r (; v i t 1 != v i t 2 ; ++ v i t 1) {

/ / o p e r a t i o n s
/ / use ∗ v i t 1

}

The following figures present the run-time behavior of the com-
pared traversion operations on different currently used computer
systems. As can be seen, there is no abstraction penalty of generic
programming in C++ at all.

10
3

10
6

10
9

Number of points

10
7

10
8

10
9

10
10

Ite
ra

tio
ns

/s

C code

DSEL

10
3

10
6

10
9

Number of points

10
7

10
8

10
9

10
10

Ite
ra

tio
ns

/s

C code

DSEL

Figure 6. Vertex traversal exeuted on a P4 (left) and AMD (right).
10

3
10

6
10

9

Number of points

10
7

10
8

10
9

10
10

Ite
ra

tio
ns

/s

C code

DSEL

10
3

10
6

10
9

Number of points

10
7

10
8

10
9

10
10

Ite
ra

tio
ns

/s

C code

DSEL

Figure 7. Vertex traversal exeuted on a G5 (left) and IBM (right).
6. Conclusion

We have presented a generic environment suitable for all kinds of
simulations, especially for the numerical solution of PDEs. We
have presented the main paradigms, the generic programmingas
well the functional programming approach, the applicability and
the runtime efficiency. Due to the shift of most of the calculations
to compile time, runtime performance is excellent. With ourap-
proach it is possible to build scientific applications with few lines
of code.

7.References
[1] S. Selberherr,Analysis and Simulation of Semiconductor De-

vices. Wien–New York: Springer, 1984.
[2] R. Heinzl and T. Grasser, “Generalized Comprehensive Ap-

proach for Robust Three-Dimensional Mesh Generation for
TCAD,” in Proc. SISPAD, (Tokyo, Japan), pp. 211–214,
Sept. 2005.

[3] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser, “Coupling
Three-Dimensional Mesh Adaptation with an A Posteriori
Error Estimator,” inProc. SISPAD, (Tokyo, Japan), pp. 235
– 238, Sept. 2005.

[4] A. Hössinger, R. Minixhofer, and S. Selberherr, “Full Three-
Dimensional Analysis of a Non-Volatile Memory Cell,” in
Proc. SISPAD, (Munich, Germany), pp. 129–132, Sept.
2004.

[5] R. Sabelka and S. Selberherr, “A Finite Element Simulator
for Three-Dimensional Analysis of Interconnect Structures,”
Microelectronics Journal, vol. 32, no. 2, pp. 163–171, 2001.

[6] IµE, MINIMOS-NT 2.1 User’s Guide. Institut für
Mikroelektronik, Technische Universität Wien, Austria,
2004. http://www.iue.tuwien.ac.at/software/minimos-nt.

[7] H. Ceric, Numerical Techniques in Interconnect and Pro-
cess Simulation. Dissertation, Technische Universität Wien,
2004.

[8] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser, “Multi-
dimensional Process and Device Simulation with a Generic
Scientific Simulation Environment,” in6th IEEE Interna-
tional Caribbean Conference on Devices, Circuits and Sys-
tems Proceedings",(2006), (Playa del Carmen, Mexico),
April, 26-28 2006.

[9] J. Siek, L.-Q. Lee, and A. Lumsdaine,The Boost Graph Li-
brary: User Guide and Reference Manual. Addison-Wesley,
2002.

[10] C. Böhm, ed.,Lambda-Calculus and Computer Science The-
ory, Proceedings of the Symposium Held in Rome, March
25-27, 1975, vol. 37 ofLecture Notes in Computer Science,
Springer, 1975.

[11] M. Sperber and P. Thiemann, “Realistic Compilation by Par-
tial Evaluation.,” inPLDI, pp. 206–214, 1996.

[12] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser, “"Adap-
tive Mesh Generation for TCAD with Guaranteed Error
Bounds",” inThe 2005 European Simulation and Modelling
Conference Proceedings",(2005), (Porto, Portugal), pp. 425
– 429, October 24-26 2005.

[13] R. Bauer,Numerische Berechnung von Kapazitäten in drei-
dimensionalen Verdrahtungsstrukturen. Dissertation, Tech-
nische Universität Wien, 1994.

[14] R. Sabelka,Dreidimensionale Finite Elemente Simulation
von Verdrahtungsstrukturen auf Integrierten Schaltungen.
Dissertation, Technische Universität Wien, 2001.

[15] S. Wagner, T. Grasser, and S. Selberherr, “PerformanceEval-
uation of Linear Solvers Employed for Semiconductor De-
vice Simulation,” in Proc. SISPAD, (Munich, Germany),
pp. 351–354, Sept. 2004.

[16] IBM Corporation, Yorktown Heights, NY, USA,IBM Visu-
alization Data Explorer, third ed., Feb. 1993.

