AN, L Ovhere iy

0 Ehevrrld Ergameering:

&

High Performance Process and Device Simulation
with a Generic Environment

René Heinz, Michael Spevak, Philipp Schwah&, Tibor Grasse?

“ Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics

°Institute for Microelectronics,

Technical University Viea,

GuRhausstraRe 27-29/E360, A-1040 Vienna, Austria
E-mail: {heinz|spevakschwah{grasser}@iue.tuwien.ac.at

Abstract

A high performance generic environment for TCAD and general
scientific computing is presented that imposes no restristion
geometry, topology or discretization schemes, so that teansa
and even complete models can easily be implemented. Theogene
programming approach with the corresponding base concepis

the applicability in the area of TCAD with the performancénae-

ior is presented.

1. Introduction

The scientific computing approach is used to gain an undetsta
ing of scientific and engineering problems by the analysiath-
ematical models implemented in computer programs and dolve
by numerical solution techniques. Numerical methods eygulo
in discretization, interpolation, or optimization makesws highly
nonlinear functionsf,(x) which can consist of several coupled
differential equations. Due to the great diversity of phgsiphe-
nomena, which can be described by differential equatiort®of
siderable complexity, present in different areas of sdiertom-
puting, the development of several discretization schedfildsas
been necessary in order to best model the underlying phgeits
to accommodate the mathematical peculiarities of each exfeth
equations while transferring them to the discrete world igi-d
tal computing. As a consequence the development of siroulati
software is quite challenging, especially with high pemfance
requirements.

In the field of TCAD, as in many others, the numerical simokati
results are based on different discretization schemes asidix
nite differences, finite elements, and finite volumes. Ed¢hese
schemes has its merits and shortcomings and is therefore anor
less suited for different classes of equations. All of thesth-
ods have in common that they require a proper tessellatidn an
adaption of the simulation domain [2, 3], so-called (unstineed)
meshes or (structured) grids.

To deal with all of these issues, our institute has develajitéelr-
ent simulation environments, libraries, and applicationthe last
decade such as the Wafer-State-Server [4], STAP [5], MigiX®
[6], FEDOS [7]. A more detailed overview of these simulatisrs
given in [8].

2. Generic Programming

Generic programming extends the interface capabilitigh@bb-
ject oriented programming approach in the direction to ephc
based programming. With its parametric polymorphism, taia d
type [9] must support the required concepts only. The maingo
of programming with concepts does not lie in the actual ssurc
code. This programming paradigm focuses on the developaient
concepts, which means that the user can easily add new gt ty

or classes, which must only support the required conceptS+#
parametric polymorphism is provided by the template meisinan
which offers an overall high performance due to separatenigs-

tion possibilities. Therewith, the generic programmingaoigm
establishes homogeneous interfaces between algorithdhdada
structures without subtyping polymorphism (class hignes).
Within our approach, three different basic concept have sepa-
rated. Theopology, which means the study of manifolds and their
embeddings like structured or unstructured topologiesedeethe
geometrymeans the properties of configurations of geometric ob-
jects, e.g. cylinder coordinates for a structured topaldgpally,
thequantity extends the geometry concept to all kinds of attributes
or properties, which can be attached to objects (topolbgicge-
ometrical).

To reflect these concepts, the implementation is heavilgdas

the type parameterization, which means the static or pdramme
polymorphism of generic programming. In our environmemere

are different levels of type parameterization:

- Objects (vertex, cell)
All different kinds of vertices (structured, unstructuyede im-
plemented with only one generic vertex class. With the speci
ization mechanism, the compiler generates the suitabkexer
class based on the base type of topology. Therewith the code
maintenance is reduced to a minimum.
- lterators (derived iterators)
We have developed a complete iterator hierarchy. On the one
hand side, there are different iterator categories (fouyaidi-
rectional, random access). On the other side there arewoly t
important iterators for each base topology. The cell_ortexe
and the vertex_on_cell iterator. All other iterators candee
rived from these two by the compiler.
- Handles, geometrical coordinates, quantity storage
The handles are parameterized with the counter data type,
whereas the geometry is parameterized with the numeric type
of coordinate storage. The quantity storage is parameteriz
with the numeric type for quantity element storage.
Next to the parametrization approach, functional progrémgm
techniques are available in C++ such as Lambda (unnamed func
tions [10]) and Currying (partial function evaluation [}1] To
highlight the behavior of the functional programming pagaa
we present an example based on the C++ STL: the usage ofgeneri
algorithms on arbitrary data structures. The next sampheote
strates the output from a generic container:

std ::vector dnt > data;
copy(data.begin(), data.end(),

ostream_iterator mt >(std :: cout, "\n"));

The complexity is hidden in the behavior of the third argutrten
the generic copy algorithm. With the functional approachoae
write things more intuitively:



Fruan L oheryv i

for_each(data.begin(), data.end(),
std::cout << argl << '\n’);

In the next section we present the applicability of the geramd
functional programming in the field of scientific computing.

2.1. Concepts for Topology

Most of the used topologies in TCAD and in scientific compgtin
are based on two basic types of topology:

Structured topology: A widespread approach to spatial dis-
cretization is to divide the simulation domain into a stued
assembly of quadrilateral cells, with the topological infiation
being apparent from the fact that each interior vertex hastgx
the same number of neighboring cells. This kind of discagitin

is calledstructured gridor simplygrid. The next figure represents
an example of this type of mesh.

Unstructured topology: The alternative approach is to divide the
computational domain into an unstructured assembly of more
less arbitrarily formed cells. The topological informatioan not
be deduced implicitly from the elements and has to be stoxed e
plicitly. This kind of discretization is callednstructured mesbr

simply meshand can be seen in the next figure for the two dimen-

sional case.

2.2. Concepts for Quantities

Due to the handling of a large number of different quantjties
have developed different concepts for all different kinélsjuan-
tities. These quantities need to be stored on various abeet-
tices, edges, facets, cells). On the one side, we have gectiD
completely generic quantity library which is capable ofistg var-
ious mathematical structures in a dense and a sparse fasoaddr
values, vector values, matrices, and tensors. On the atfenge
have developed specializations of all of these mathematiazc-
tures to provide high performance calculations, for instafor
small fixed size vectors and matrices.

3. Applicability of our Approach

To demonstrate the applicability of our approach we briefspnt

1 Ehevrrond Eogmecring:

&

AT

{

segment. store_quantitygcs,
quantity_name , value);
++vCs;

}

The property or quantity treatment is accessible in an atistvay
through function objects. The next few code lines print abati-
ties found on vertices. Note the dimensional and topolddicke-
pendence:

std :: string key_pot = "BuiltinPotential";
quan_t pot_quan =
scalar_quanfsegit, key_pot);
for_each (& segit).vertex_begin (),
(xsegit).vertex_end(),
std::cout << pot_quan << std::endl );

With this approach, a very high level of abstraction fromdidt
ferent kinds of data structures and functionality can beviges.
Algorithms can be specified in a dimension independent atal da
structure neutral way. This enables the opportunity for shera
matical layer where functions can be specified in C++ diyedib
show the applicability of this approach we investigate thplhace
equation:

=0

Ay
(s - w) 5

edge vertex J

wherei stands for the-th vertex andj for the adjacent vertex tra-
versed over the corresponding edge. The equation can biéspec
in the following way in C++ with the support or our approach:

Laplace finite volume discretization

for (vit = container.vertex_begin ();

vit I= container.vertex_end(); ++vit)
{
equation =

( sum<vertex_edge >
[
diff <edge_vertex >[pot]
] «A/d
) (xvit);
}

The complete equation is examined at compile-time to coosén
optimized means to obtain the needed data. The complexirgsul
from this mapping is completed by specifying the currentdy-i
ated vertex at run-time. In other words, the compiler wilays
generate the most suitable code for each topology, dimenasial
equation. Therewith an overall high performance can besaehli
This algorithm can be used for 1D, 2D, and 3D structured and un

some examples. We want to emphasize the coupling of differen structured meshes.

concepts used in our approach to support simple and robfist so
ware development in the area of scientific computing.

Support for several spatial dimensions is inherently idetliin a
way that programs can be written independently of the space d
mension without unreasonable penalties on run-time andanem
consumption. The key feature to achieve this abstractidhds
iterator/cursor concept, which can be used like this:

vertex_cursor vcs =
while (vcs.valid ())

segment.vertex_begin ();



4. Examples and Results

In this section two different examples are analyzed. Faisinter-
connect simulation is demonstrated where the currentloligiton
within an interconnect line creates a selfheating effettis Bim-
ulation is based on a finite element discretization of theldeg
equation. Secondly, we analyze automatic mesh adaptagiam b
a posteriori error estimators, which is a major issue in @ss@nd
device simulation. The error estimation techniques arsegmed
in detail in [12].

4.1.Interconnect Simulation

The temperature distribution caused by self-heating &ffecan
interconnect line is depicted in Figure 1. The equationsl zse
given in [13,14]. To illustrate the influence of the probleines
on the overall system matrix assembly step, we investigatéest
structure with different refined meshes. The run-time perémce
is compared to one of our fastest simulation engines avai[&h
As a result, no relevant run-time (Figure 2) as well as sofuti
differences were obtained.

Interconnect line

Contact1

300K 400K

Figure 1. Temperature distribution due to self-heating in a tapered

interconnect line with cylindrical vias.

+—e Our approac|
= -uSAP

Equ/s

4
10

10° 10' 10° 10°
Number of vertices

Figure 2. Comparison of our approach with a highly specialized

finite element package on uniformly refined meshes.

4.2.Adaptive Mesh Generation

We use an simple structure (Figure 3) to demonstrate the €sro
timation and adaptive meshing procedure. Therefore théacap
equation is solved in the SiQayer around the contacts. The main
aim of this simulation is to determine the capacitance betwibe
two electrodes both very precisely and efficiently. To chti
the complete example a solver interface [15], as well aslémea
visualization interface [16] is implemented in our genenwiron-
ment. We start with an initial mesh and increase the poinsitien
in regions where an error estimator returns high valuesnTie
solve the Laplace equation again and re-estimate the enrtiveo

romruan L onberenor on Ehaorod Ergmmoerng:

&

T

new structure. We do this iteratively until we have only edens
with an error below a certain error bound.

S

Figure 3. The initial structure with two contacts (blue: 1V, red: 0

V) and surrounding oxide (transparent)

Figure 4. Initial calculation with high error values (red) and low

error values (blue) for the example structure with 1000 points.

Figure 5. Error distribution after two steps calculation for the ex-
ample structure with 1500 points.

The next diagram presents the number of elements in each erro
class, whereas error class 1 stands for a small error antcéass 7

for a big error. As can be clearly observed, the number of efem

in error class 1 increases and the number of elements in liee ot
error classes drops due to our mesh adaptation technique.

66 % mm [nitial error

O3 Final adapation
33%
0%

5. Runtime Efficiency

To investigate the abstraction penalty of our generic codeam+

alyze a simple C implementation without any generic ovedhiea
our generic environment. The abstraction penalty meangatie
of the execution time resulting from code which takes adwg@bf

certain abstractions, and the execution time obtained & tower-

level code which has equivalent functionality but does rsat the
abstractions. The next code snippet presents the C souled@o
a three dimensional object traversion:

C approach for a simple traversal over all vertices

for (i3 = 0; i3 < sized3; i3++)
for (i2 = 0; i2 < sized2; i2++)
for (il = 0; il < sizedl; il++)
{

/l operations
/I use i1, i2, i3




Fruan L oheryv i

Our approach for the traversal over all vertices

vitl = container.vertex_begin ();
vit2 = container.vertex_end();
for (;vitl I= vit2; ++vitl) {

/loperations
/] use xvitl

}

The following figures present the run-time behavior of theneo
pared traversion operations on different currently usedpder
systems. As can be seen, there is no abstraction penaltyefige
programming in C++ at all.

lU“1 T T T ')

Iterations/s
Iterations/s

=

=
T
!

10 ! ! !

10
Number of points Number of points

Figure 6. Vertex traversal executed on a P4 (left) and AMD (right).

10 T T T 10" T T T

10°F

s

.

o,
T
!

Iterations/s
Iterations/s

=
=
T

10

10
Number of points

Figure 7. Vertex traversal executed on a G5 (left) and IBM (right).

Number of points

6. Conclusion

We have presented a generic environment suitable for aliskafi
simulations, especially for the numerical solution of PDBENe

1 Ehevrrond Eogmecring:

(5]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

have presented the main paradigms, the generic programesing

well the functional programming approach, the applicébiind
the runtime efficiency. Due to the shift of most of the caltiolas
to compile time, runtime performance is excellent. With apr
proach it is possible to build scientific applications wigwflines
of code.

7 .References

[1] S. SelberherAnalysis and Simulation of Semiconductor De-

vices Wien—New York: Springer, 1984.
(2]

R. Heinzl and T. Grasser, “Generalized Comprehensive Ap

proach for Robust Three-Dimensional Mesh Generation for
TCAD,” in Proc. SISPAD (Tokyo, Japan), pp. 211-214,

Sept. 2005.
3]

P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser, “Cogpli

Three-Dimensional Mesh Adaptation with an A Posteriori

Error Estimator,” inProc. SISPAD (Tokyo, Japan), pp. 235

— 238, Sept. 2005.
[4] A. Hossinger, R. Minixhofer, and S. Selberherr, “Fullr€b-

Dimensional Analysis of a Non-Volatile Memory Cell,” in
Proc. SISPAD (Munich, Germany), pp. 129-132, Sept.

2004.

&

AT

R. Sabelka and S. Selberherr, “A Finite Element Simulato
for Three-Dimensional Analysis of Interconnect Strucsiire
Microelectronics Journalvol. 32, no. 2, pp. 163-171, 2001.

IE, MINIMOS-NT 2.1 User's Guide Institut fur
Mikroelektronik, Technische Universitat Wien, Austria,
2004. http://www.iue.tuwien.ac.at/software/minimds-n

H. Ceric, Numerical Techniques in Interconnect and Pro-
cess SimulationDissertation, Technische Universitat Wien,
2004.

R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser, “Multi-
dimensional Process and Device Simulation with a Generic
Scientific Simulation Environment,” i6th IEEE Interna-
tional Caribbean Conference on Devices, Circuits and Sys-
tems Proceedings",(2006)Playa del Carmen, Mexico),
April, 26-28 2006.

J. Siek, L.-Q. Lee, and A. Lumsdain&he Boost Graph Li-
brary: User Guide and Reference Manu&lddison-Wesley,
2002.

C. B6hm, ed.Lambda-Calculus and Computer Science The-
ory, Proceedings of the Symposium Held in Rome, March
25-27, 1975vol. 37 of Lecture Notes in Computer Science
Springer, 1975.

M. Sperber and P. Thiemann, “Realistic Compilation lay-P
tial Evaluation.,” inPLDI, pp. 206—214, 1996.

R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser, “"Adap
tive Mesh Generation for TCAD with Guaranteed Error
Bounds",” inThe 2005 European Simulation and Modelling
Conference Proceedings",(200%porto, Portugal), pp. 425
— 429, October 24-26 2005.

R. Bauer,Numerische Berechnung von Kapazitaten in drei-
dimensionalen Verdrahtungsstruktureissertation, Tech-
nische Universitat Wien, 1994.

R. Sabelka,Dreidimensionale Finite Elemente Simulation
von Verdrahtungsstrukturen auf Integrierten Schaltungen
Dissertation, Technische Universitat Wien, 2001.

S. Wagner, T. Grasser, and S. Selberherr, “Performanuak
uation of Linear Solvers Employed for Semiconductor De-
vice Simulation,” in Proc. SISPAD (Munich, Germany),
pp. 351-354, Sept. 2004.

IBM Corporation, Yorktown Heights, NY, USABM Visu-
alization Data Exploreythird ed., Feb. 1993.



