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Abstract. Full-band Monte Carlo simulation offers a very accurate simulation technique, but is often limited by

its high demand on computation time. The advantage of a numerical representation of the band structure over an

analytical approximation is the accurate representation of the energy bands in the high energy regime. This allows

accurate treatment of hot carrier effects in semiconductors. In this work we outline an efficient full-band Monte

Carlo (FBMC) simulator and investigate the accuracy of simulation results for different meshing approaches for

the Brillouin zone.

1. Introduction

The VIENNA MONTE CARLO SIMULATOR (VMC) [1] offers simulation algorithms for both bulk semiconductors

and one-dimensional devices based on analytical and full-band models. Additionally, a fast zero-field algorithm

is included [2]. VMC provides a mature set of scattering models including phonon scattering, ionized impurity

scattering, alloy scattering and impact ionization.

For FBMC simulations a numerical representation of the band structure in the unit cell of the reciprocal lattice,

the so-called Brillouin zone, is used to capture the dependence of the carrier energy on the wave vector. Taking

advantage of the periodicity and the symmetry properties of a crystal only a part of the band structure in the first

Brillouin zone, the so called irreducible wedge has to be considered [3]. For unstrained silicon with its diamond

crystal structure this irreducible wedge is only 1/48 of the Brillouin Zone. Figure 1 shows the first Brillouin zone

and the irreducible wedge for unstrained silicon.

In this work, we describe the basic layout of a rejection algorithm used by VMC to select the final tetrahedron

for a carrier after a scattering event occurred. It is shown why the use of tetrahedral meshes is convenient for

this selection algorithm. Results of bulk simulations of unstrained silicon are shown, demonstrating the impact of

different meshing strategies on simulation accuracy and computation time.

(a) Brillouin zone (b) First octant of the Brillouin zone

Figure 1: Brillouin zone of silicon highlighting the first octant and the first irreducible wedge.
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2. Efficient Scattering Algorithms

Special attention has been paid to keep the code efficient because the CPU time consumption of FBMC is often a

drawback for practical use. One crucial point is to incorporate efficient scattering algorithms. In VMC scattering

models with constant matrix elements are used [4], so that the scattering rates are proportional to the density

of states (DOS) at the particle’s final energy after scattering ǫf . Selection of a carrier state after scattering then

relies mainly on fast calculation of the contribution to the DOS of the mesh elements including the particle’s final

energy. This is achieved by using tetrahedral mesh elements and linear interpolation of the energy within the mesh

elements. The contribution to the DOS gi of the i-th tetrahedron is proportional to the intersection of the energy

iso-surface Ai(ǫf) [5][6].

gi =
1

(2π)3~

Ai(ǫ)

|v(k)|
(1)

Here v(k) is the group velocity

v(k) =
1

~
∇kǫ(k) (2)

which is constant within a tetrahedron. It can be precalculated and stored in a table. The whole DOS is given by

g (ǫ) =
1

(2π)3

∫

BZ

δ(ǫ − ǫi(k)) d3k =
1
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∫

A(ǫ)

1
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d2k =

∑
i

gi (3)

One superior feature of tetrahedral meshes over cubical-meshes is that an energy iso-surface within the Brillouin

zone is continuous.

The most time consuming task while performing a scattering event is the selection of a final tetrahedron containing

the final energy ǫf . Several tables are calculated once at start time of the simulation to speed up this selection

process.

• Table of Sorted Tetrahedrons: the tetrahedral mesh elements representing the considered part of the first

Brillouin zone are sorted with respect to their lowest energy values. Additionally, the numbering of the

vertices of each tetrahedron is sorted with respect to increasing energy levels.

• Table of Upper Bounds for DOS: the maximum DOS within all tetrahedrons within subsequent energy

intervals is stored to build a table of upper bounds DOS(ǫ).

• Upper Bound for Energy Differences: the largest energy difference within tetrahedrons in a specific energy

interval is stored for subsequent energy intervals to build a list of upper bounds ∆ǫmax(ǫ).

After a scattering event is evaluated the final energy ǫf of the scattered particle is known and so the search for a

final tetrahedron after scattering can be constricted to the tetrahedrons containing ǫf . Actually only tetrahedrons in

the energy range between ǫmin and ǫmax from the table of sorted tetrahedrons are considered in this search.

ǫmin > (ǫf − ∆ǫmax(ǫf))
ǫmax < ǫf

(4)

The corresponding table indices Nmin and Nmax are calculated by a binary search. Then a tetrahedron Ti is

chosen randomly from this interval. There is a small number of tetrahedrons in the considered interval which do

not contain ǫf . These are sorted out within a first rejection step. During a second rejection step the DOS within the

tetrahedron has to be evaluated. Figure 2 shows a flow-chart of the selection procedure with its two step rejection

technique. Since the whole procedure is repeated until the second rejection step is passed, gi(ǫf) has to be evaluated

frequently during the simulation. In this task tetrahedron meshes perform very efficient because of the efficient

way to calculate a tetrahedron’s contribution to the DOS.

3. Representation of the Band-Structure in Momentum-Space

In VMC the first octant of the first Brillouin Zone is meshed to represent the band structure of relaxed and biaxially

strained silicon. Because an octant is a larger volume than the irreducible wedge, this approach obviously increases

memory consumption. However, it simplifies the manipulations needed when particles reach a boundary. The

energy bands are calculated for the irreducible wedge using the empirical pseudopotential method [7] and then

transformed by coordinate permutation to completely fill the first octant. Two approaches of mesh generation are

used in the VMC, one providing structured and another providing unstructured tetrahedral meshes.
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Figure 2: Rejection technique for the selection of the final state in k-space. r1 and r2 are uniformly distributed

random numbers between zero and one.

Structured Tetrahedral Mesh This mesh is based on an octree-based approach. The basic idea behind this

method is to divide the whole domain to be meshed into cubes and afterwards this cubes are divided into six

tetrahedrons. To mesh the {111} surface of the Brillouin zone either one or five tetrahedrons have to be cut away

from the six tetrahedrons forming one cube. The result is a structured tetrahedral mesh, whose surface is conform

with the Brillouin zone boundary.

Figure 3(a) shows the kx-ky plane of the first octant of the Brillouin zone with the contour plot of the energy of

the first conduction band. The main drawback of the octree approach is, that it is very challenging to implement a

sufficient and flexible refinement strategy to adjust different mesh densities. In [8], an octree algorithm is proposed

which can deal with different mesh densities, but the refinement zone is limited to a cubical region and therefore

not very flexible.

Unstructured Tetrahedral Mesh A very flexible way of generating unstructured meshes is to use a mesh gen-

erator which can handle arbitrary point clouds with different point densities. In this particular work DELINK [9]

was used to generate an initial, very coarse, unstructured mesh. For different energy bands this initial mesh was

refined by the so-called tetrahedral bisection method. The basic idea of this method is to insert a new vertex on a

particular edge, the refinement edge, of a tetrahedron, and to cut the tetrahedron into two pieces.

In literature, one can find different improvements and specifications for this algorithm (see, for example [10]). One

common problem is the detection of the refinement edge, as supporter for the new vertex. In a mesh, tetrahedrons

are not isolated and inserting a new vertex influences the whole refinement edge batch of the tetrahedron if the

conformity of the mesh after the refinement step should be kept, which is normally the case. To guarantee good

shaped elements, a recursive refinement mechanism was chosen. This approach produces very regular, almost

isotropic elements. Regimes of high point densities are pre-defined by the known positions of the band minima in

the Brillouin zone.
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(a) Structured Mesh (b) Unstructured Mesh

Figure 3: kx-ky plane of the first conduction band in the first Brillouin Zone with (a) structured and (b) unstruc-

tured meshes, shown is only one octant.

Recursive Refinement Algorithm To guarantee a conforming mesh during the refinement procedure, all tetra-

hedrons sharing a common refinement edge have to be divided. A tetrahedron is said to be compatibly divisible

if its refinement edge is either the refinement edge of all other tetrahedrons sharing that edge or the edge is part

of the boundary of the domain. If a tetrahedron is compatibly divisible, we divide the tetrahedron and all other

refinement edge sharing tetrahedrons simultaneously. If a tetrahedron is not compatibly divisible, we ignore it

temporarily and divide a neighbor tetrahedron by the same process first. This leads to the atomic algorithm [11].

Figure 4 illustrates the recursive refinement process, where one new vertex is inserted.

(a) Four tetrahedrons. (b) The refinement edge. (c) New vertex. (d) Eight tetrahedrons.

Figure 4: The recursive refinement procedure involving four tetrahedrons with one common refinement edge.

As an input to the mesher, regimes of high point densities are pre-defined by the known positions of the band-

minima in the Brillouin zone of silicon. The dimension of this regime is chosen such that the shifted band-minima

of strained silicon are considered and so the same mesh structure is usable with recalculated energy values for

different amounts of strain.

4. Results

Two meshes, a fine one and a coarse one were generated for each the structured and the unstructured mesh type.

The number of points and tetrahedrons in the first conduction band of these meshes are shown in Table 1.

High Field Behavior Figure 5 shows the mean electron energy as a function of the electric field for bulk silicon

for both structured and unstructured tetrahedral meshes. As the curves for 300K and also for 77K are grouped very

close together above 10kV/cm, it can be concluded that for practical purposes the accuracy of the results in the
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high field regime is about the same for all meshes. Figure 6 shows a simular result for the velocity as a function

of the electric field. These results demonstrate that the unstructured meshes perform very well in the high energy

regimes, despite they contain less mesh elements than the structured meshes in that areas.

Low Field Behavior Figure 7 shows the normalized mean energy of electrons obtained from FBMC simulation

at thermal equilibrium. The result for the unstructured meshes are in good agreement and converge for low tem-

peratures to the theoretical equilibrium value of 3kBT/2. While the fine structured mesh is sufficiently accurate

at high temperatures, both structured meshes fail completely at low temperatures. Figure 8 shows the low field

mobility of electrons. Again the coarse structured mesh fails, while fine structured mesh is in fair agreement with

the unstructured meshes.

Computional Costs Table 1 gives an overview about computation times for different meshes. The computation

times are separated into the mesh data structure build-up times, which is required once at the beginning of the

simulation, and two typical field point calculations, one in the low field regime at 0.1kV/cm and a second one

at 200kV/cm. For every field point calculated the total amount of scattering events was set to 5 · 106. For the

calculations a commercially obtainable Intel
R© Pentium

R© 4 CPU with 2.4GHz was used and the user process CPU

time was measured.
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Figure 5: Electron mean energy versus field along [100]

direction at 77K and 300K.
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Figure 6: Electron velocity versus field along [100] direction

at 77K and 300K.
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Figure 7: Normalized mean energy of electrons at thermal

equilibrium versus temperature.
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Figure 8: Low field mobility of electrons versus temperature.
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data structure
group granularity

points
tetrahedrons build-up time 200kV/cm 0.1kV/cm

fine 278 166 1 536 134 12′19′′ 18′55′′ 14′49′′
structured

coarse 37 286 192 618 2′26′′ 4′51′′ 3′12′′

fine 39 330 180 294 1′45′′ 4′57′′ 3′54′′
unstructured

coarse 20 346 88 938 1′26′′ 4′11′′ 3′01′′

Table 1: Parameter values of the meshes used for the first conduction band and CPU time consumption for electron

velocity simulations.

One can clearly observe that the CPU time consumption is high for the structured meshes. This is mainly due the

higher build-up times. With its much higher amount of mesh elements in the fine structured mesh, it takes a long

time to compute the precalculated tables shown in the last section. The unstructured fine mesh is approximately in

the same range as the coarse structured mesh, but one has to keep in mind, that the structured mesh fails completely

for average kinetic energy at temperatures less than room temperature, where the coarse unstructured mesh still

gives reasonable results.

5. Conclusion

It has been shown that tetrahedral meshes are a convenient choice for meshing the Brillouin Zone for full-band

Monte Carlo simulation. They allow for simple and fast linear interpolation of the energy within the tetra-

hedrons and to calculate efficiently the particle group velocity and the density of states, three values needed

very frequently during a full-band Monte Carlo simulation. Tetrahedral meshes offer a very good potential

for refinement techniques. Simulation results in the high field regime show simular accuracy for properly re-

fined meshes as for structured octree-based meshes with more than ten times the amount of tetrahedral ele-

ments. Simulations of electron mobility and mean electron energy in the low field regime show much better

results for refined meshes than octree-based meshes, particularly for simulations with low lattice temperatures.
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