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Abstract. We present an orthogonal topological framework which is
able to provide incidence traversal operations for all topological elements.
The run-time performance of this topological traversal operations can
be optimized at a highly expressive level, where the abstraction penalty
imposed by this approach is negligible. For the topological storage we
use vertex-cell as well as cell-vertex incidence information. Using meta-
programming and the archetype concept we can optimize traversal of
inter-dimensional objects without explicitly storing them.

1 Introduction

The field of scientific computing often imposes highly complex formulae with
quantities of different topological elements. Many applications such as the dis-
cretization of partial differential equations (PDE) as well as interpolation mech-
anisms strongly depend on the base traversal mechanisms the environment pro-
vides.

We present a set of base traversal operations which is sufficient for all ap-
plications. This approach results in a rigorous implementation of topological
structures which covers all types of topological elements such as vertices, cells
and general inter-dimensional elements called faces. The expressiveness of the
code is increased, because we do not need to write traversal algorithms explicitly
for each of the elements such as edge-cell traversal but the information can be
derived by a subset of highly optimized operations.

Using the generic programming paradigm in combination with parametric
polymorphism in C++ we have the opportunity to formulate a concept for a
topological base structure. It provides an interface for the construction, traversal
and handle generation for different topological structures. Based on the topo-
logical structure it is possible to formulate discrete problems independently of
the actual underlying topology, e.g. a finite volume discretization scheme can be
formulated independently from the topology and the dimension.

2 Related Work

In the last decade there have been many approaches towards implementing a
general purpose simulation environment for partial differential equations. Most of
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these have implemented the underlying minimal topological structures necessary
for discretization, which on the one hand does reduce resource use, but comes
at the cost of greatly diminishing the flexibility of topological traversal.

The major step towards a more flexible use of topological structures is pre-
sented in [4]. The grid algorithm library introduces the first cursor [2] based
approach on multi-dimensional data structures.

Most of the other environments either completely veil the topological infor-
mation by formalisms like element matrices [3] or control functions [6], commer-
cial simulation tools provide access by the formulation of the final PDE such as
FEMLab. For this reason calculations which use non-standard traversal mecha-
nisms are cumbersome or impossible to specify.

3 Conception and Implementation

The main aim of our topological container interface is to provide mechanisms
for insertion, traversal and handling. The most important concept requirement
for the topological data structure is the retrieval of cell-vertex and vertex-cell
incidence information in constant time. Even though it is redundant to keep inci-
dence vertex-cell as well as cell-vertex information, if these methods are available
in constant time, we can also derive traversal algorithms for arbitrary incidence
in constant time, which would not be possible if we only use the vertex-cell in-
cidence information. Storing this information requires the least memory of all
possible storage methods which require constant time for incidence traversal.

Topological elements are described with so called handles, which are in gen-
eral integers and uniquely identify the element within all elements of the same
dimension.

If we have a structured grid it is possible that incidence information can
be derived implicitly. This means that we only store the number of ticks per
dimension and generate all handles as well as traversal information from this
information.

The basic topology only has to provide cursor access to all its cells and
vertices as well as the incidence information from cells to vertices and vice versa.
We introduce the main topological concept in the following table. As we only

Name Description Requirements
vertex cursor Cursor over vertices Cursor Concept

vertex begin(), vertex end() Cursor range const
cell cursor Cursor over cells Cursor Concept

cell begin(), cell end() Cursor range const
vertex on cell cursor Local traversal Cursor constructable with cell
cell on vertex cursor Local traversal Cursor constructable with vertex

Fig. 1. Concepts for the topological base structure

store the incidence information between cells and vertices we have to specify the
incidence information of inter-dimensional elements. Even though it is possible
to introduce data types for each kind of element we use archetypes which are
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in general less error prone and provide higher flexibility compared to manually
coded traversal.

The archetype concept [4] introduces local faces within a cell. For example
a topological 2-simplex consists of three vertices and three 1-faces (edges). The
archetype can be shown either as simple graph or Hasse diagram (Fig. 2). All the
archetype information is known at compile time, as we assume that archetypes
do not change during run time. Using the mechanisms of meta-programming
[1] we obtain high performance traversal routines. If both, archetype as well as

Fig. 2. The graph as well as the Hasse Diagram of the 2-simplex as well as a 2-cuboid
archetype.

cell-vertex incidence information is available we can derive incidence information
between elements of arbitrary dimension. Given, that the face can be identified
uniquely by all covered vertices, we can derive a unique handle for each of the
faces. As already mentioned we use the random access cursor concept in order to
provide access to the topological elements. We refine the cursor concept [2] for
data structural convenience. In contrast to the iterator concept, dereferentiation
of a cursor does not provide the data content but a handle. This handle is used
as a key to access a property map or quantity [5] in order to obtain the contained
data. Our cursor concept is a refinement of the random access cursor concept
and introduces the following refinements.

Name Description Requirements
bool valid() Validity of cursor (not end) const
cursor end() past end of cursor validity const
void reset() set to the start point const

Fig. 3. Concept refinement for the cursor within the topological framework.

4 Performance Analysis

In order to test the performance we create a homogeneous structure with dif-
ferent element sizes in two and three dimensions and perform different traversal
operations. We show the performance of insertion, the vertex cursor, the cell on
vertex cursor as well as the edge on vertex cursor.

All traversal operations are independent of the total number of elements and
only depend on the local patch size of the base element. This implies that in
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numerical schemes with an effort bigger than O(n) the topological operations
are not the limiting factor.

Especially for the solution of discretized partial differential equations us-
ing different discretization schemes the influence of the topology on the total
simulation time is less relevant. The performance obtained by the topological
framework is comparable to a hand optimized C implementation. In the full pa-
per we will show a rigorous comparison of different topological implementations
in C as well as C++.

5 Conclusion

We have shown a framework which is able to provide information and incidence
traversal of all topological elements. We used the programming paradigms of
generic programming as well as meta-programming in order to formulate the
problems on an abstract level without incurring a relevant abstraction penalty.
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