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Introduction

Problems occurring in microelectronic device design and TCAD (Technology Computer Aided Design)
are often modeled by means of partial differential equations (PDEs). An essential step in all of these
methods is to find a proper tessellation of a continuous domain with discrete elements, either based on
ortho-product grids or unstructured meshes.

The major advantages of the unstructured mesh approach is that tetrahedral or triangular meshes are
locally adaptable and surfaces can be modeled with arbitrary precision. While in two dimensions mesh
generation and adaptation techniques are mostly based on hand crafted meshes, it is almost impossible
to design and adapt meshes in three dimensions. On that account it is very important to automatically
generate and optimize meshes in three-dimensions.

Error Estimation Techniques and Mesh Optimization

As a first step we estimate the error caused by the discretization we have chosen. This may either be a
finite volume or finite element discretization. First we will introduce residual error estimators. Due to
the discretization the numerical solution does not fulfill the differential equation exactly and therefore
the residuum is used as a measure of the discretization error [1]. The ZZ error estimator [2] measures
how much the numerical solution uh differs from a smoothed numerical solution uh . For some types of
differential equations, such as the Laplace equation, the ZZ estimator has been shown to have upper and
lower error bounds [2].

After calculating a local measure for the error we have to adapt the mesh in order to improve the quality
of the solution if this measure exceeds an upper limit. On the other hand, we have to coarsen the mesh
if the error is smaller than a lower error limit in order not to use unnecessarily fine meshes in regions of
low error. The process of inserting more tetrahedra into the mesh is called mesh refinement, removal of
elements from the mesh is called coarsement. In the following the complete processes is referred to as
mesh adaptation.

There are different techniques of mesh control. The easiest method is to introduce an upper and a lower
bound for refinement and coarsement as mentioned before. Second the upper error bound can be set to
a level so that a certain number of cells (e.g. the worst 20 per cent) is refined.

Examples and Conclusion

To illustrate the applicability we analyze an interconnect structure by solving the Laplace equation in
the SiO2 layer around the contacts. The main aim of this simulation is to determine the capacitance
between the two electrodes both very precisely and efficiently.

Using the advantages of mesh adaptation in combination with a posteriori error estimation leads to an
enormous speed up of the calculations while the accuracy of the simulation result is comparable to the
uniformly refined and highly resolved solution. For this reason mesh adaptation allows us to improve the
mesh quality locally without increasing the number of mesh points dramatically.
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