
Process and Device Simulation with a

Generic Scientific Simulation Environment

Michael Spevak, René Heinzl, Philipp Schwaha, Tibor Grasser

Abstract—We present a high performance environment
for scientific simulation applications (GSSE). This en-
vironment is based on the three orthogonal concepts
of topology, geometry, and quantities. Lambda calcu-
lus is used in order to assemble various partial differen-
tial equations for TCAD and other physical equations.
We present examples from device and process simula-
tion which show the applicability of our environment.
Despite the high abstraction level we can archieve high
performance.

I. Introduction

A general environment for TCAD equations has to
provide methods for the solution of different physical
phenomena such as carrier transport, diffusion, electro-
magnetic wave propagation, heat transfer, mechanical
deformation, fluid flow, and quantum effects. Due to
the wide range of applications it is not trivial to develop
an environment which is capable of handling all equa-
tions within a homogenous environment. In the field of
TCAD coupled partial differential equations and multi
quantity equations are often employed. For the solu-
tion of these equations we use discretization schemes
such as the finite element method, the finite volume
method, the finite difference method or the boundary
element method.

Each of these schemes has its merits and shortcom-
ings and is therefore more or less suited for different
classes of equations. All of these methods have in com-
mon that they require a proper tessellation and adap-
tion of the simulation domain [1], [2]. Due to the diver-
sity of the mathematical structures themselves, com-
bined with efficiency considerations, in particular in
three dimensions, the development of simulation soft-
ware is quite difficult. Supporting libraries for numeri-
cal simulations exist, but no complete environment for
scientific computing to tackle the following issues:
• Support for different geometries and topologies
• Complete and tested discretization schemes
• Support for mathematical modeling
• High performance calculation
• (Real-time) visualization
Hence, the simulation tools are typically written by ex-
perts specialized in other fields. In the extreme case all

M. Spevak is with the Institute for Microelectronics, Technical
University Vienna, E-mail: spevak@iue.tuwien.ac.at

R. Heinzl, P. Schwaha, and T.Grasser are with the Christian
Doppler Laboratory for TCAD in Microelectronics at the Insti-
tute for Microelectronics, Technical University Vienna, E-mail:
{heinzl|schwaha|grasser}@iue.tuwien.ac.at

areas of simulator development, like software design,
programming, testing, and evaluation are done by one
person. In the last decade our institute has developed
different simulators and libraries, like SAP [3], Wafer-
State-Server [4], and Minimos-NT [5]. However, none
of them has shown to be perfect for the rapid progress
in scientific software development. Even the reuse of
simple code parts is difficult, due to the non-generic
library approach.

Therefore a scientific environment with high flexibil-
ity and adaptivity of meshes combined with great flexi-
bility in numerical treatment and discretization schemes
in all dimensions is called for. It should be possible to
use a common code base which is easily adaptable to
special requirements but does not require specialized
features for different discretization schemes such as ele-
ment matrices like many other specialized finite element
simulation environments.

On that account, we have extracted the main con-
cepts from all of our simulation tools and developed
the generic and lightweight environment GSSE which
suits scientific requirements. On the one side, generic
library means that each part of GSSE can be used sep-
arately. The complete GSSE is based on header files
only and therefore the required mechanisms can be in-
cluded without incurring additional dependencies. On
the other hand, generic means that all data types are
parameterized and can be exchanged easily, for instance
the numerical data type for quantity storage.

GSSE is designed for rapid development of simulation
software. One of the most important facts is that errors
can be easily found and even prevented. As errors are
often not obvious to detect it may already take a lot of
experience to decide if the result from a simulation is
erroneous or not. If the result is not correct, it might
be reduced to a programming bug, a logical error in
the program flow, or a badly chosen parameter. Due
to this reason it is necessary to locate an error quickly.
Each of the data structures which we provide can itself
be tested before compound data structures are tested.
Thus the development effort for the final code can be
reduced enormously.

In the following we will present some examples of our
simulations from the field of semiconductor device and
process simulation. First we solve a simple device sim-
ulation example. Then we benchmark a finite element
example with the electromagnetic simulation tool SAP.

475

Both examples will show that our environment can per-
form fast calculations.

II. The Generic Scientific Simulation

Environment

Due to the large variety of available models and dif-
ferential equations, discretization schemes, and simula-
tion domains we had to extract the base concepts of
a simulation environment. The main aspect of soft-
ware design is orthogonality as well as modularity. Each
component should be usable without any dependences
to another. If a higher structure combines two base
structures (e.g. quantities on a topology) it does not
depend on the lower structures but it only relies on the
concept.

Topology. Within a scientific simulation environ-
ment it is crucial to have neighborhood information of
vertices, edges, faces, and cells available within a con-
stant time. For this reason we have implemented a data
structure which covers only topological information of
vertex cell incidence and cell vertex incidence. Even
though storing one of these incidence functions is re-
dundant it is necessary to guarantee constant time for
traversal. Based on this incidence information we gen-
erate inter-dimensional objects such as edges and faces.
The incidence information of edges and faces does not
need to be stored explicitly because it can be derived
from the base traversal functions and the archetype in-
formation.

The archetype concept implies that each cell of the
tessellation has the same topological shape or very few
different shapes. Therefore we need not store all edge
and face information but we can derive it from an
archetype. For this reason the unstructured topology
is highly flexible. We can use archetypes of different
dimensions and shapes.

Geometry. Even though we have a convenient
method for describing the topology of a simulation do-
main this does not imply that we store the coordinate
information on the vertices and cells. Topology tells us
for instance if two vertices are connected by an edge.
It however does not provide any information about the
real geometry of the curve. This is the task of the geom-
etry concept. The basic geometry concept is the point
list. The point list contains the geometrical point co-
ordinates associated to the topological vertices. From
this information we can derive the geometry of all edges,
faces and cells. We can perform orientation tests, vol-
ume measurements, and the calculation of the voronoi
information.

Quantity. Quantities are numerical attributes
which can be stored on all topological elements using
their handles. Using an associative storage concept we
can store values with respect to an associative key of the
topology and a quantity descriptor key (which might be
a string). The value types of the quantities can be cho-

sen differently. The simplest case is a scalar floating
point value. We also provide vector and tensor quan-
tities as well as string quantities. The quantity data
type can be parameterized on the data type so that it
is possible to use any type as data type for the quantity.

Based on these core concepts, a mathematical func-
tion layer was implemented to provide easy develop-
ment of all different modeling issues on the one side
and a high performance computing on the other side.
This layer includes all necessary functions for a conve-
nient numerical analysis as well as accumulation func-
tions which will be discussed later on in the example
section. We even have the possibility to work with lin-
earized functions which provide direct access to the sys-
tem matrix for line-wise entry as well as finite element
stencils.

As we have parameterized data types for numerical
calculations it is possible to introduce abstract matrix
data types with lazy evaluation concepts which can re-
duce the execution time as well as the number of tem-
porary objects. For this reason we use expression tem-
plates [6], [7] as well as lambda expressions [8].

A solver interface is integrated in this environment for
the use of all different kinds of state-of-the-art solvers
called TRILINOS [9]. For the important visualization
purpose within scientific computing, IBM’s data ex-
plorer [10] is integrated with a few modifications to
make a real-time visualization possible.

III. Device Simulation

The field of device simulation requires the use of
many different numerical techniques. Macroscopic
transport [11] models are among the most widely em-
ployed calculations. These models can be derived by
applying the moment method on the Boltzmann equa-
tion. Together with the Poisson equation they form a
system of partial differential equations which are capa-
ble of describing the behavior of semiconductor devices.
We use the simplest macroscopic model, the drift dif-
fusion transport equations. In the following we show
how the equations can be discretized in our environ-
ment by the means of the finite volume method. The
discretization formula for the Poisson equation yields

∑

edge vertex

(Ψj − Ψi)
A

d
= V (n − p + NA − ND) q (1)

Based on this discretization formula we obtain the fi-
nal discretization routine (1) we can write the following
statement in the GSSE.

eqn = (sum<vertex_edge>

[diff<edge_vertex>(0.0)[potential] * A / d]

- q * volume * (n - p + N_A - N_D))(v);

The same assembly routine can be applied to the cur-
rent relations using the Scharfetter-Gummel discretiza-

476

tion [12] (generation and recombination rates are omit-
ted here).

Jw =
1

Λ
(njB (Λ) − niB (−Λ)) , (2)

where B is the Bernoulli function. Using the method
of finite volumes we have discretize the current integral
on the boundary of the control volumes. If we consider
the stationary case as well as zero recombination we
obtain the following code snippet for our discretization
scheme.

eqn = sum<vertex_edge>(0.0)

[area / distance * diff<edge_vertex>()

[n * bern(d_psi/u_th)]

[n * bern(-d_psi/u_th)]]

(v);

Both discretization terms need quantities which are lo-
cated on topological elements (Fig. 1). The potential
and charge terms as well as the box volume are stored
on the vertices. The distance (d) and area (a) as well as
the potential difference dψ are stored on the edges. The
sum as well as the difference operations change the lo-
cality. The expression within the brackets gives the kind
of traversal; vertex edge iterates over all edges which
cover a vertex, whereas edge vertex iterates over all
vertices which are covered by an edge. The formula in
the square brackets are evaluated on all elements of the
traversal and accumulated. bern denotes the Bernoulli
function B which is used in the Scharfetter-Gummel
current relation. From this specification the Jacobian

Fig. 1. The local patch of a vertex. We outlined the vertices as
well as the edges.

matrix and the right hand side are assembled auto-
matically. An automatic derivation of the linearized
function, which is very error prone if done by hand,
can be achieved by using an associative data structure.
This data structure contains matrix entries as well as a

right hand side value. For structures which are called
linearized equations, we have implemented basic oper-
ations such as addition and multiplication as well as
other numerical functions such as the already demon-
strated Bernoulli function. This method can be used
in order to assemble linear as well as nonlinear equa-
tions which include discrete couplings between single
topological elements. The complete application does
not need more than 100 lines of code, the core is only
about 25 of these lines.

IV. Process Simulation

In general, three-dimensional process simulation
steps need special surface treatment and must provide
the ability to handle surface elements of arbitrary com-
plexity containing degenerated or even faulty elements.

For the solution of problems in process simulation as
well as interconnect simulation finite element methods
are commonly used. In the following example we apply
the finite element method to the Laplace equation in
order to calculate capacitances as well as resistances of
interconnect structures. In the following we will calcu-
late two simple structures in order to evaluate the cor-
rectness of our simulation and to show the performance
of the environment. The example is a single intercon-
nect line. Even though it is very simple it shows the
applicability of the GSSE as well as the performance.

V. Runtime Efficiency

To compare the runtime efficiency of the generic sci-
entific environment we used the fastest (Poisson only)
simulation tools from our institute (SAP) and run
different application benchmarks with an automatic
benchmark system.

As our environment is on a high semantic level and
also does not impose a high abstraction penalty it is
easy to make special optimizations if simpler partial
differential equations have to be discretized:

• There is only one solution quantity
• We only apply one kind of differential equation

Even though these conditions are not always met we
can gain performance if any of them is fulfilled. The
genericity of our environment allows us to use these
simplifications for all kinds of differential equations.

For the testing of the finite element code we divide
the simulation time into the following parts. Each of
the parts is measured independently in order to show
the differences.

• Preparation (I/O, mamory allocation)
• Assembly (Jacobian matrix and RHS)
• Solution

Our performance test example has to be very simple
because we have to eliminate implication which result
from problems with complicated geometries. Our test

477

Preparation Assembly Solution

GSSE
SAP

0

50 ms

100 ms

Fig. 2. Structure with 8.700 tetrahedra and 2.300 vertices.

Preparation Assembly Solution

GSSE
SAP

0

500 ms

1000 ms

Fig. 3. Structure with 64.000 tetrahedra and 14.000 vertices.

sample is a simple via line with a length of 10µm and a
square cross-section of 1µm2. For the test case we apply
a potential difference of 1V. For both examples we use
meshes which have been generated with vgmodeler [1]
with 8.700, 14.000 and 97.000 tetrahedra. The compari-
son of the run time on an Intel Pentium 4 with 2.80GHz
shows the following results (Fig. 2, Fig. 3, Fig. 4):

The benchmarks (Fig. 2, Fig. 3, Fig. 4) show that the
GSSE does not have a high time consumption for the
preparation of the quantities. However in assembly time
as well as in solution time the highly optimized code is
faster but within the same order of magnitude. The
solution time shows that the TRILINOS solver package
is well designed for large matrices.

VI. Conclusion

A generic environment for scientific computing has
been presented. It can handle a large variety of differ-
ential equations which can be specified with different
discretization schemes such as finite elements, finite vol-
umes and finite differences. We have shown that a high
semantic level does not necessarily imply an abstrac-
tion penalty so that the performance is comparable to
highly optimized programs.

Even though we have shown the applicability of our
environment on very simple structures it is possible to

Preparation Assembly Solution

GSSE
SAP

0

5 s

10 s

Fig. 4. Structure with 520.000 tetrahedra and 97.000 vertices.

extend the features very conveniently. First the simu-
lation domain can be taken from any meshing output.
The partial differential equations can be extended to
more complex models using a C++ embedded language.

Using this environment it is possible for scientists to
formulate PDE problems with a full topological and ge-
ometrical support for the development of applications
with minimal in-depth knowledge of internal data struc-
tures.

References

[1] R. Heinzl and T. Grasser, in Proc. Conf. in Sim. of Semicon-
ductor Processes and Devices (Tokio, 2005), pp. 211–214.

[2] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser, in
Proc. Conf. in Sim. of Semiconductor Processes and De-
vices (Tokio, 2005), pp. 235–238.

[3] R. Sabelka and S. Selberherr, in Proc. Intl. Interconnect
Techn. Conf. (Burlingame, California, 1998), pp. 250–252.

[4] A. Hössinger, R. Minixhofer, and S. Selberherr, in Proc.
Conf. in Sim. of Semiconductor Processes and Devices
(2004), pp. 129–132.

[5] IµE, MINIMOS-NT 2.1 User’s Guide, Institut für
Mikroelektronik, Technische Universität Wien, Austria,
2004, http://www.iue.tuwien.ac.at/software/minimos-nt.

[6] T. L. Veldhuizen, in Proc. of PEPM’99. (University of
Aarhus, Dept. of Computer Science, 1999), pp. 13–18.

[7] J. G. Siek and A. Lumsdaine, in ECOOP Workshop (1998),
pp. 466–467.

[8] in Lambda-Calculus and Computer Science Theory, Vol. 37
of Springer series Lecture Notes in Computational Sciene
(LNCS), edited by C. Böhm (Springer, Rome, 1975).

[9] M. A. Heroux et al., ACM Trans. on Math. Software (2005),
for TOMS special issue on the ACTS Collection.

[10] IBM Visualization Data Explorer, 3rd ed., IBM Corpora-
tion, Yorktown Heights, NY, USA, 1993.

[11] T. Grasser, T. Tang, H. Kosina, and S. Selberherr, Proc.
IEEE 91, 251 (2003).

[12] D. Scharfetter and H. Gummel, IEEE Trans. Electron Dev.
16, 64 (1969).

478

