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Abstract— An overview of models used for the simulation of
current transport in upcoming microelectronic devices within the
framework of TCAD applications is presented. Modern enhance-
ments of semiclassical transport models based on microscopic
theories as well as quantum mechanical methods used to describe
coherent and dissipative quantum transport are specifically
addressed. This comprises the incorporation of quantum correc-
tion and tunneling models up to dedicated quantum-mechanical
simulators, and mixed approaches accounting for both, quantum
interference and scattering. Specific TCAD requirements are
discussed from an engineer’s perspective and an outlook on future
research directions is given.

I. INTRODUCTION

The breathtaking increase in computational power and speed
of integrated circuits in the past decades has been supported
by the aggressive size reduction of semiconductor devices.
This trend is expected to continue in the coming decade as
predicted and institutionalized by the International Technology
Roadmap for Semiconductors [1]. Today, when the 90 nm
technology node with physical transistor gate lengths in the
range of 40 nm is in mass production, the challenge is to
introduce the 65 nm technology node already within a year.
A new technology node is introduced every 3 years, with
a long-term projection of the 22 nm node to be in mass
production by the year 2016. A possibility to build metal-on-
insulator field effect transistors (MOSFETs) with even shorter
gate lengths has been successfully shown after the 6 nm gate
length transistor has been demonstrated in research labs [2],
[3]. From a theoretical point of view even a few nm gate
length device has been predicted to be functional [4], [5].
Nevertheless, emerging outstanding technological challenges
related to different aspects of MOSFET fabrication and relia-
bility in mass production, as well as the rapidly increasing
power dissipation may slow down the so far exponential
scaling of Complimentary MOSFETs (CMOS). Besides, with
the ongoing search for new technological solutions vital for
CMOS downscaling, developing conceptually new devices and
architectures is becoming increasingly important. New nano-
electronic structures, such as carbon nanotubes, nanowires, and
molecules, are considered to be the most prominent candidates
for the post-CMOS era. Since conventional MOSFETs are
already operating in the sub-100 nm range, new nanoelectronic
devices are expected to complement and substitute some of the
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current CMOS functions after being integrated into CMOS
technology.

Technology computer-aided design (TCAD) tools are used
to assist in development and engineering at practically all
stages ranging from process simulation to device and circuit
optimization. The main purpose of TCAD is the technology-
development related cost reduction which is estimated to about
40% according to ITRS [1]. Due to the aggressive downscaling
of CMOS device feature sizes and newly emerging nano-
electronic devices, various shortcomings of presently applied
TCAD tools appear. These tools are frequently based on semi-
classical macroscopic transport models. From an engineering
point of view, classical models like the drift-diffusion model,
have enjoyed an amazing success due to their relative simplic-
ity, numerical robustness, and the ability to perform two- and
three-dimensional simulations on large unstructured grids [6].
Hot-carrier effects have motivated the development of higher-
order transport models such as the hydrodynamic, energy-
transport and six-moments models [7]. However, inaccuracies
originate from the non-local nature of carrier propagation in
ultra-scaled devices [8].

Non-local effects may be of classical or quantum-
mechanical nature, depending on the underlying physics rel-
evant to the transport process. Classical non-localities appear
when the mean-free path is comparable to the device feature
size. Quantum mechanical non-local effects start to determine
the transport properties when the devices’ size is of the order
of the De-Broglie electron wave length. Size quantization of
carrier motion in inversion layers of MOSFETs and in ultra-
scaled multi-gate devices as well as the tunneling current,
including the gate leakage current, are the most important
examples of quantum effects in MOSFETs.

Fig. 1 shows the hierarchy and mutual interrelation of
models currently used for the description of current transport.
Semiclassical transport models are based on the Boltzmann
equation which includes scattering integrals describing re-
alistic microscopic processes. These semiclassical models,
augmented with quantum corrections, are still of great impor-
tance due to their relative computational simplicity, numerical
stability, and an ability to provide reasonable quantitative
results within seconds even for devices with gate length as
short as 50 nm. A brief overview of the currently developed
semiclassical transport models will be presented in Section 2.

Quantum ballistic transport models describe a coherent
propagation of carriers. They are based on the solution of
the Schrödinger equation for the wave function, supplemented
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Fig. 1. Schematic classification of approaches used in semiconductor current transport modeling.

with the corresponding boundary conditions. This approach is
efficient and provides accurate results when carrier scattering
is irrelevant and can be neglected. The method will be illus-
trated in Section 3 with an example of transport in carbon
nanotubes [9].

Finally, dissipative quantum transport theory represents the
most complete description of transport, which combines the
coherent carrier motion between the scattering events with co-
herence (or phase) breaking due to carrier scattering. Different
formalisms are currently used, based on the Dyson equation
for the non-equilibrium Green’s functions, the Liouville/Von-
Neumann equation for the density matrix, or the Wigner
transport equation. Section 4 deals with quantum transport
characterized by both scattering and quantization. A conclu-
sion will summarize the main findings and give directions for
future research.

II. SEMICLASSICAL TRANSPORT

After the ground-breaking work of Scharfetter and Gum-
mel [10], who first proposed a robust discretization scheme
for the drift-diffusion equation, computer programs like MIN-
IMOS [11] and PISCES [12] played a pioneering role in
numerical simulation of current transport properties of semi-
conductor devices. Since then, numerous transport models of
increasing complexity have been introduced. The semiclassical
transport description is based on the Boltzmann equation for
the distribution of carriers f(r,k, t) in the phase space. The
Boltzmann equation includes carriers’ scattering with phonons,
impurities, interfaces, and other scattering sources through
the corresponding collision integrals. Although the solution
of the Boltzmann equation can be found numerically by
means of Monte Carlo (MC) methods, TCAD models based
on moments of the distribution function are highly desirable.
Being computationally significantly less expensive than the
MC method, these higher-order moments’ methods provide a
reasonable quantitative answer for devices as short as 50 nm
within seconds. The fairly new six moments model [7] based
on non-Maxwellian distribution takes naturally into account
the hot-carrier effects such as avalanche generation, hot carrier
induced gate currents, or hot-carrier diffusion, which typically
take place in Silicon-On-Insulator (SOI) floating body MOS-
FETs. For the purpose of calibration the full-band MC method

is often accepted, since it can precisely account for the various
scattering processes [13].

Another important development of transport models is re-
lated to the MC methods for solving the Boltzmann equation.
After the pioneering work of Kurosawa in 1966 [14], who
was the first to apply the MC method to simulate carrier
transport in semiconductors, the significantly improved MC
method was successfully applied to transport description in
a variety of semiconductors [15]. For electrons in silicon,
the most thoroughly investigated case, it is believed that a
satisfactory understanding of the band structure and of the
basic scattering mechanisms has been achieved giving rise to a
“standard model” [16]. Nowadays, an accurate MC evaluation
of carrier transport properties in inversion layers is of primary
importance for predicting performance of modern CMOS bulk
devices. Due to the strong confinement of carriers in the
inversion layer of bulk MOSFETs or due to the geometric con-
finement in multi-gate FETs the carrier motion is quantized in
one or two confinement directions giving rise to the formation
of subbands. One possibility to address the effect of quantum
confinement on the electron concentration is to use an effective
potential. This can be achieved by a convolution of the
electrostatic potential with a Gaussian function, which leads to
a smoothing of the original potential [17], [18], [19]. Another
option is to use the self-consistent Poisson-Schrödinger-based
quantum corrected potential [20], [21], which suppresses the
carrier concentration close to the interface, mimicking the
real quantum-mechanical behavior. These approaches combine
advantages of full-band structure and flexibility of scattering
processes of three-dimensional classical MC simulations [22]
with the generality of material composition and transport
peculiarities due to quantum confinement and may also address
the strain effects [23]. The MC approach may incorporate the
quantized carrier motion in the direction orthogonal to the
current exactly. The quantum-mechanical motion of carriers
in the confined direction is addressed by the self-consistent
solution of the corresponding Schrödinger and Poisson equa-
tion, leading to the formation of subbands. The carrier motion
within each subband may still be considered semiclassical and
therefore can be well described by the corresponding Boltz-
mann equation written for the subband distribution function
fn(r,k, t). Because of possible carrier transitions between
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Fig. 2. Comparison of subband MC simulations with the experimental [24]
universal mobility of surface layer in silicon. The deviation of the experimental
mobility from simulations at low effective fields is due to Coulomb scattering
not included in the MC simulations.

different subbands due to scattering, the collision integrals on
the right-hand-side of the Boltzmann equation should include
the terms responsible for the intersubband scattering processes.
The transport in the inversion layer of a MOSFET is finally
described by a set of Boltzmann equations for every subband,
coupled to each other via the intersubband scattering integrals.
The set of the subband Boltzmann equations for fn(r,k, t) is
conveniently solved by a MC method. This approach therefore
combines the advantages of a quantum description in confine-
ment direction with a semiclassical description in transport
direction and represents a transition between semiclassical and
quantum-mechanical pictures. An example of the simulation
of the low-field surface mobility in inversion layers of silicon,
when the transport in the current direction may be treated
semiclassically is shown in Fig. 2, together with the experi-
mental “universal mobility” curve [24]. In order to reproduce
the universal mobility curve, up to 40 unprimed and 20 primed
subbands formed at a (100) silicon interface were taken into
account, with realistic electron-phonon and surface roughness
scattering included [25].

III. QUANTUM-BALLISTIC TRANSPORT

With the aggressive downscaling of MOSFET dimensions
continuing, the classical description of carrier motion in
transport direction is gradually losing its validity. When the
characteristic scale of the potential variation along the channel
is comparable to the De-Broglie wave length of a carrier,
a TCAD transport model must include the quantum effects
in transport direction. If scattering processes can be ignored
and particle propagation in the device is ballistic, the carrier
motion is determined by the solution of the Schrödinger
equation, supplemented with open boundary conditions [26]–
[28]. In order to determine the current density, it suffices

µ
µ

Fig. 3. Subthreshold characteristics for a double-gate MOSFET with silicon
thickness of 2 nm, gate length of 2.5 nm and the oxide thickness of 2.5 nm [4].
The dotted line corresponds to the ideal 60 mV/decade subthreshold slope.
The dashed line shows the leakage current.

to know the transmission coefficient TC(E) as well as the
supply function N(Ex) from the electrodes [29]. A similar
approach can also be used to determine the gate leakage
current [30]. The solution of the Schrödinger equation with
open boundary conditions can be achieved by means of
the quantum transmitting boundary method [31], [32]. An
established alternative framework for these calculations is
the non-equilibrium Green’s Function method [33] in its
reduced coherent version. It is conveniently used for one-
dimensional studies of resonant tunneling diodes or carbon
nanotubes. Simulators accounting for a full two-dimensional
solution of the open-boundary Schrödinger equation have been
reported and applied to the simulation of 10 nm double-gate
MOSFETs [26], [34]. It may appear that in the quantum-
ballistic case the determination of the full wave function
as a solution of the Schrödinger equation is not necessary
and the knowledge of the transmission coefficient is enough
for the current calculations. In the contact block reduction
method [35] the transmission function is fully determined by
the reduced contact part of the full Green’s function. However,
the carrier concentration alters the electrostatic potential in the
device via the Poisson equation. The carrier concentration is
proportional to the square of the wave function, implying that
the accurate determination of the transmission coefficient and
therefore the current requires a self-consistent solution of the
Schrödinger and Poisson equation simultaneously. For quasi-
one-dimensional transport this can be achieved straightfor-
wardly [4]. An example of the output characteristics simulated
for an ultra-thin body double-gate MOSFET with a gate length
L as short as 2.5 nm is shown in Fig. 3. Surprisingly, even such
a small device possesses an Ion/Ioff ratio sufficient for logic
applications and displays a reasonable short-channel effect
and acceptable DIBL, a conclusion recently reached from
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Fig. 4. Self-consistent potential profiles calculated for n-i-n structure with
Wigner (solid lines) and Boltzmann (dashed lines) transport equations. For
long n-i-n structures results are similar. For short n-i-n structures additional
charge due to tunneling electrons results in significantly higher potential
barrier.

more detailed atomistic calculations [5]. It should be noted
that the sensitivity to small MOSFET dimension variations,
control of doping as well as the whole manufacturing process
development represent significant challenges for multi-gate
MOSFETs with gate length below 10 nm.

The ballistic quantum transport description is justified if
the size of the channel region is shorter than the scattering
length. In carbon nanotubes, where elastic scattering can be
ignored and inelastic scattering has little effect on current [36],
the measured current value [37] can well be predicted within
the quantum-ballistic approach [9]. Similar methods can be
applied to describe the output characteristics of FinFETs
in the ballistic approximation [38]. In silicon MOSFETs,
however, the mean-free path in the area close to the potential
maximum at 300 K is only a few nm [39], and the full
quantum description which includes dissipative processes must
be adopted to simulate MOSFETs with a gate length of around
10 nm. A consistent introduction of realistic scattering into
simulators based on the coherent description alone creates
outstanding computational difficulties ranging from a necessity
to invert huge matrices in NEGF formalism [33] to calcu-
lations of nonlocal scattering rates in Pauli master equation
approaches [40]. Besides the difficulties of introducing scat-
tering into the simulators based on the coherent description,
these simulators are often limited to specific geometries, grids
and short length scales, which makes their integration into
modern engineering TCAD tools problematic. Nevertheless,
these simulation approaches are necessary for the estimation
of upper bounds of current transport at the quantum limit.

IV. DISSIPATIVE QUANTUM TRANSPORT

The methods described so far are either based on the
assumption of semiclassical or pure quantum-mechanical bal-
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Fig. 5. Typical IV curve of resonant tunneling diode computed with Wigner
MC self-consistently. The negative differential resistance after the peak is
characteristic for resonant structures.

listic transport. The former modeling approach has proven
to be adequate to describe transport in previous generations
of microelectronic devices. The latter one may be used for
transport description when the carrier coherence length is
larger than the devices size. Recent studies show that even
for devices with the channel length as short as 15 nm scat-
tering will still play a significant role [41] and therefore
determine the current, in accordance with estimations of
the mean-free path in MOSFET structures [39]. Crossover
from diffusive to ballistic transport in Si nanowire transistors
occurs at approximately 2 nm [42], a much shorter distance
than previously anticipated. An adequate transport model for
ultra-scaled MOSFETs must therefore account for quantum
mechanical and dissipative effects simultaneously. In modern
microelectronic devices quantum effects are usually dominant
in a small active region connected to relatively large, heavily
doped contact areas where the carrier dynamics is essentially
classical. Therefore, TCAD simulators should also be able
to incorporate both semiclassical and (dissipative) quantum-
mechanical modeling approaches within the same formalism.
To a certain extent, various quantum corrections can serve the
purpose, as already discussed.

The non-equilibrium Green’s functions method addresses
the problem in the most consistent and complete way. Due
to its completeness, the method is computationally complex
and usually applied to one-dimensional problems [33] and
for a restricted set of scattering mechanisms [43] only. The
carbon nanotube (CNT) FET, which is widely considered to be
a potential alternative to conventional MOSFETs, represents
a good example where the nonequilibrium Green’s function
method provides accurate results [44].

An alternative approach which can handle both quantum-
mechanical and dissipative scattering effects is based on the
Wigner function formalism. Realistic scattering processes can

6



be easily embedded into the Wigner equation via Boltzmann-
like scattering integrals, which turns out to be a good ap-
proximation. The Wigner function approach reduces to a
semiclassical transport description for slow varying potential
providing the important advantage of a seamless treatment
between classical and quantum-mechanical regions in device
simulations [45]. By applying the method of moments to the
equation for the Wigner function, the quantum drift-diffusion
or quantum hydrodynamic models can be derived [46]. These
models are more convenient for the implementation in TCAD
device simulators than a Schrödinger-Poisson solver which
strongly depends on non-local quantities. However, while the
carrier concentration in the inversion layer of a MOSFET is
reproduced correctly within this approach, the method was
reported to give improper results for tunneling currents [47].

By analogy to the Monte Carlo methods used for the
Boltzmann transport equation, it is tempting to try to solve
the quantum Wigner transport equation by means of the MC
technique. Such a program was recently realized in [45], [48],
[49]. However, since the kernel of the quantum scattering
operator is not positively defined, the numerical weight of a
particle trajectory increases rapidly, and the numerical stability
of a trajectory-based MC algorithm becomes a critical issue. A
multiple trajectories method was suggested [45] to overcome
this difficulty. In the algorithm developed, the problem of a
growing statistical weight of a single trajectory is addressed
by creating an increasing number of trajectories with constant
weights, which may assume positive and negative values.
Being formally equivalent to the former method, the algorithm
allows the annihilation of particles with similar statistical
properties, introducing a possibility to control the number of
trajectories.

The method was recently applied to double-gate MOS-
FETs [49]. An example of self-consistent potentials for n-i-n
Si structures with an intrinsic region of length W ranging from
20 nm to 2.5 nm, as calculated with Wigner and classical MC
is shown in Fig. 4. The doping profile is assumed to increase
gradually from the intrinsic channel to the highly doped
contacts value over the same distance W . Electron-phonon and
Coulomb scattering were included. As expected, for thick W
the classical and quantum calculations yield similar results for
the self-consistent potential. For W = 2.5 nm an extra space
charge due electrons tunneling under the barrier becomes im-
portant, which results in the potential barrier increase. In spite
the potential barrier increase, the current in self-consistent
Wigner simulations was approximately 20% higher compared
to its classical value found by a self-consistent solution of the
Boltzmann and the Poisson equations.

The Wigner function method gives accurate results not
only for single-barrier devices, but can also be applied to
purely quantum-mechanical systems such as resonant tunnel-
ing diodes [45]. A typical output characteristic of a GaAs
resonant tunneling diode is shown in Fig. 5. Scattering with
polar optical phonons as well as Coulomb scattering in the
contacts is considered. A region of negative differential re-
sistance common to transport via a resonant level is clearly
visible after the resonance peak at 250 mV applied voltage.
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Fig. 6. Normalized electron concentration off-resonance (dashed line) and at
resonance (solid line) in double barrier structure. Space charge accumulation
in the potential well is seen at the resonance conditions.

Self-consistent solution of the Wigner transport and Poisson
equation is mandatory for the correct determination of the
resonance position due to charge accumulation at the cathode
side of the resonant tunneling diode. A typical distribution
of the concentration in resonance condition and off-resonance
is shown in Fig. 6. The amount of charge localized in the
potential well is much higher at resonance as compared to
off-resonance conditions, in accordance with previous sim-
ulations [45]. This example demonstrates the importance of
quantum mechanical effects for simulations of properties of
ultra-scaled devices. It also shows that space charge effects
are of crucial importance for the accurate prediction of output
characteristics of single- and double-barrier devices.

V. CONCLUSIONS

Well established classical TCAD tools are gradually los-
ing their ability to predict accurately the characteristics of
nanoscale devices, prompting for enhancement to meet the
engineering demands. Classical models using higher moments
are able to account for the hot-carrier effects and can reproduce
closely results of full-band Monte Carlo methods. Relevant
quantum corrections may be incorporated into the Monte
Carlo simulators allowing to approximately account for some
quantum phenomena.

Full quantum description is required for nanoscale devices.
Contrary to carbon nanotubes, where the transport properties
can be predicted within the coherent picture, a dissipative
quantum description is required for transport calculations
in ultra-scaled MOSFETs with gate lengths ranging below
10 nm. One promising option is the Wigner function approach
which combines the advantages of a quantum description with
accurate scattering models. All quantum-mechanical models
must be adapted for engineering applications for which timely
results are often more valuable than accurate analyses.
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Cheong, and W. Park, “Separated Carrier Injection Control in Carbon
Nanotube Field-Effect Transistors,” J.Appl.Phys., vol. 97, no. 10, pp.
1 061 031–1 061 033, 2005.

[10] D. Scharfetter and H. Gummel, “Large-Signal Analysis of a Silicon
Read Diode Oscillator,” IEEE Trans.Electron Devices, vol. 16, no. 1,
pp. 64–77, 1969.

[11] S. Selberherr, W. Fichtner, and H. Pötzl, “MINIMOS – A Program
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