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INTRODUCTION

Due to the strong impact of quantum mechanical
effects on the characteristics of todays semiconduc-
tor devices, purely classical device simulation is no
longer sufficient to provide proper results.

Schrödinger Poisson (SP) solvers, delivering a
self consistent solution of the quantum mechanical
carrier concentration and the Poisson equation, ac-
curately determine quantum confinement, but they
are computationally demanding. In order to obtain
proper results at significantly reduced CPU time,
several quantum correction models for classical sim-
ulations have been proposed [1–5]. However, some
of these corrections are based on empirical fits with
numerous parameters [3, 4]. In some other models,
the dependence on the electrical field adversely
affects the convergence behavior [2]. Practically,
the model proposed in [1] has to be recalibrated
for each device. A comprehensive comparison of
these models can be found in [5]. In addition, none
of these models is suitable for highly scaled DG
MOSFETs in the deca nanometer regime where two
coupled inversion regions occur. In this work, we
present a new, physically based, and more specific
approach for state-of-the-art DG MOSFETs.

APPROACH

The value of the classical carrier concentration
with quantum confinement correction is adjusted to
be equal to the quantum mechanically calculated
carrier concentration by introducing the quantum
correction potential ϕcorr as

ncl,corr = NC exp
(
−
Ec − qϕcorr −Ef

kBT

)

nqm = NC1

∑
n

|Ψn(x)|2 exp
(
−
En −Ef

kBT

)
.

Here, NC and NC1 denote the effective density of
states for classical and the quantum mechanical car-
rier concentration, respectively, ϕcorr the quantum

correction potential, Ec the conduction band edge
energy, and Ef the Fermi energy.

This approach requires the knowledge of the
energy levels En and the wavefunctions Ψn(x) of
the quantized states. To avoid the computationally
expensive solution of the Schrödinger equation,
we tabulate the solutions for a parabolic shaped
conduction band edge, Ec(x) = Emax−a(d/2−x)

2,
as displayed in Fig. 1. Input parameters are the
film thickness d and the curvature a which is
derived from an initial classical simulation. The
wave functions are expanded as

Ψn(x) =

∑
k

ξn,k

√
2

d
sin
(π
d
kx
)
.

Hence, the offset of the energy levels εn and the
expansion coefficients of the wavefunctions ξn,k can
be found by interpolation of tabulated values. This
allows one to estimate a correction potential ϕcorr

such that the corrected classical carrier concentra-
tion is consistent with the SP solution

exp
(
−
qϕcorr

kBT

)
= exp

(
−
a(d/2 − x)2

kBT

)

×
∑
m

NC1,m

NC

∑
n

|Ψm,n(x)|2 exp
(
−
εm,n −Ef

kBT

)
.

Here, m denotes the summation over the different
valley sorts (three for silicon) [6].

RESULTS

We implemented this model in the general pur-
pose device simulator MINIMOS-NT [7]. Our SP
simulator VSP was used to derive the reference QM
curves. Fig. 2 and Fig. 3 show the electron concen-
tration at different bias points for DG MOSFETs
with 5 nm and 10 nm film thickness. Outstanding
agreement between the QM and the corrected clas-
sical curves (DGTab) is achieved. Both the inversion
charge and the gate capacitance shown in Fig. 4 and
Fig. 5 demonstrate excellent agreement for a wide
range of gate voltages and relevant film thicknesses.



CONCLUSION

We derived a physically based quantum correc-
tion model which accurately reproduces both carrier
concentrations and gate capacitance characteristics
even for extremely scaled DG MOSFET devices.
Due to its computational efficiency the model is
well suited for TCAD simulation environments.
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Fig. 2. Electron concentrations for a 5 nm DG MOSFET
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Fig. 4. Electron charge density per unit area. Logarithmic
scale in the upper left part, linear scale in the lower right part.
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Fig. 1. Conduction band edge energy approximation and
eigenenergies
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Fig. 3. Electron concentrations for a 10 nm DG MOSFET
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Fig. 5. Gate capacitance per unit area versus gate voltage




