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Nonparabolic macroscopic transport models for device simulation based
on bulk Monte Carlo data
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We derive higher-order macroscopic transport models for semiconductor device simulation from
Boltzmann’s transport equation using the method of moments. To obtain a tractable equation set
suitable for numerical implementation the validity of the diffusion limit will be assumed which
removes the convective terms from the equation system. The infinite hierarchy of equations is then
truncated at the orders twosdrift-diffusion modeld, four senergy-transport modeld, and six.
Nonparabolicity correction factors are included in the streaming terms. Closure relations for the
highest-order moments are obtained from a cold Maxwell distributionsdrift-diffusiond and a heated
Maxwell distributionsenergy-transportd. For the six moments model this issue is more complicated.
In particular, this closure relation is identified to be crucial both in terms of accuracy and in terms
of numerical stability. Various possible closure relations are discussed and compared. In addition to
the closure of the highest-order moment, various transport parameters such as mobilities and
relaxation times appear in the models and need to be accurately modeled. Particularly for
higher-order transport models this is a complicated issue and since the analytical models used in our
previous attempts did not deliver satisfactory results we extract all these parameters using
homogeneous Monte Carlo simulations. Since all macroscopic transport models are based on rather
stringent assumptions a practical evaluation is mandatory. Therefore, the proposed six moments
model, a corresponding energy-transport model, and the drift-diffusion model are carefully
compared to self-consistent Monte Carlo simulations. ©2005 American Institute of Physics.
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I. INTRODUCTION

Carrier transport in modern semiconductor device
commonly investigated using Boltzmann’s transport e
tion, which is solved either directly by means of the Mo
Carlo method1 or by methods based on an expansion of
distribution function in momentum space into a series
spherical harmonics.2,3 To obtain a physically accurate p
ture of carrier transport which includes as many effects
as few approximations as possible, the Monte Carlo me
is often the method of choice. However, on an enginee
level the Monte Carlo method is inconvenient, becaus
requires large simulation times. In particular, the extrac
of certain device parameters is very costly, for instance
sit frequencies, small-signal parameters, threshold volt
and in general situations where only small current levels
involved. Therefore simpler methods have been der
which, for instance, focus only on the first few moment
Boltzmann’s transport equation.1,4,5

Since the advent of the first simulators that solved
semiconductor equations on one- or two-dimensional ge
etries, the drift-diffusion model4 has been the workhorse
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Technology CADsComputer Aided Designd engineers. Th
drift-diffusion model comprises the first two moments
Boltzmann’s equation and is as such the lowest-order
cation. More accurate models which alleviate some of
most stringent assumptions underlying the drift-diffus
equations have already been proposed over 40 years6,7

Generally speaking, the assumption that the carrier gas
equilibrium with the lattice is removed by introducing
separate temperature for the carrier gas. However, th
quires some additional closure relations which are comm
derived by assuming a heated Maxwellian distribution fu
tion.

As of yet, these higher-order transport models have
been widely accepted as a viable substitute. The reaso
this are manifold: A big advantage of the drift-diffus
model is that it contains only one transport parameter
carrier mobility. This mobility can in principle be measu
as a function of various parameters such as the applied
tric field, doping concentration, and temperature, fitted
suitable analytical expressions,8,9 and inserted in the tran
port model. Unfortunately, this is not the case for hig
order transport models. For instance in the case of
energy-transport model5,10 we have in addition to the carri

mobility the energy-flux mobility and the energy-relaxation
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time. Since these parameters cannot be directly mea
they have to be either modeled11,12 or extracted from Mont
Carlo simulations.10,13–15Neither of these options is witho
problems. Analytical models for the parameters, although
curate on a qualitative level, often fail to reproduce sim
tion results obtained from Monte Carlo methods. The
lytical models use a couple of parameters which are o
slightly adjusted to obtain the desired result for a partic
application. Unfortunately there is no unique paramete
that fits all requirements, and there is always the dange
the validity of a transport model is extended heuristically
adjusting improper parameters. It is thus difficult to as
whether the model is predictive or not. As an alternative
extraction of the transport parameters from Monte C
simulations has been proposed where we have two op
The first one relies purely on data extracted from hom
neous Monte Carlo simulations,14,15 whereas other researc
ers have tried to identify characteristic features of trans
parameters by investigating inhomogeneous case
well.10,13

Another subject of intense research is the numerica
havior of higher-order transport models. While the d
diffusion model is numerically robust and w
investigated4,16 a stable implementation of higher-ord
transport models is more difficult to obtain.17–21

Finally, and most importantly, many doubts regard
the accuracy of fourth-order models like the energy-trans
model have been raised. It has often been observed th
additional overhead imposed by these methods is not ju
able when for instance the terminal currents of adva
metal-oxide-semiconductorsMOSd transistors are calculat
where even the predictions of the simple drift-diffus
model can be closer to the reference Monte Carlo resu

One of the fundamental motivations to use higher-o
models such as energy-transport models is that they pr
the average carrier energy which can then be used for
eling hot-carrier effects. Unfortunately, the average ca
energy alone has proven to be insufficient to describe ef
like impact-ionization22,23 and hot-carrier gate currents,24,25

because the average carrier energy bears no inform
about the high-energy tail of the distribution function wh
is critical in these circumstances. Therefore, empirical
local models have to be used.26 Additional information abou
the distribution function and the high-energy tail in particu
can be obtained by using additional moments for its cha
terization. Models utilizing six moments have been p
posed, which add the kurtosis of the distribution functio
an additional solution variable.27,28 These models hav
proven to give significantly better descriptions of the dis
bution function.29 Here we show that this extended mom
hierarchy also improves the predicted velocity profiles
terminal currents.

There are many critical issues concerning the validit
available macroscopic transport models, mainly relate
the assumptions made in their derivation. One fundam
assumption underlying basically all macroscopic trans
models in practical use for semiconductor device simula
is that some sort of diffusion approximation holds. As a c

sequence, all convective terms in the transport equations a
d
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neglected. There are basically three reasons why thi
sumptions is so widespread: first, carriers in semicondu
are considered to form a collision dominated system, e
cially at room temperature. Second, the modeling of t
convective terms is rather difficult and third, they introd
hyperbolic modes into the equation system, which mak
considerably more difficult to solve.30 Monte Carlo simula
tions show, however, that the convective energy can be o
same order than the thermal energy, particularly in mo
submicron devices.31

Another critical approximation concerns the modelin
the scattering integral in Boltzmann’s equation.5,32 Rather
simple expressions are obtained by applying the macros
relaxation time approximation where mobilities are in
duced in analogy to the drift-diffusion model. These mo
ties are then usually modeled as a function of the ave
energy only. A more rigorous treatment reveals, howe
that the odd moments of the scattering integral depend o
odd moments of the distribution function and thus on
fluxes of the system.12,33 Unfortunately, closure relations
this type cause an additional coupling between the flux e
tions and would require a detailed description of the ene
like tensors to obtain an overall improvement of the trans
model.34

In the following we propose a refined version of our
moments model.28 The refined version includes the influen
of a nonparabolic band structure on the streaming te
Since the closure of the highest-order moments was fou
be crucial for the accuracy of the model and its nume
robustness we discuss various options and identify the
suited one. Considerable effort has been put into studyin
numerical behavior and stability and we summarize our
ings. Finally, the rather stringent assumptions in the de
tion make it difficult to assess the accuracy of the final m
roscopic transport model based on theoretical considera
Therefore, a practical evaluation is required which is
tempted in the last sections of this article.

II. THE SCALED BOLTZMANN EQUATION

The macroscopic transport models are derived from
single particle Boltzmann transport equation35

]f

]t
+ u ·¹r f + F ·¹pf = Qffg s1d

using the method of moments. Boltzmann’s equation
semiclassical kinetic equation, which assumes that the
tion of carriers is governed by Newton’s laws. The scatte
operatorQ represents the rate of change off due to collision
and is modeled via Fermi’s Golden Rule. We limit the
cussion to the nondegenerate case and neglect carrier–
scattering. The solution of Boltzmann’s equation is the
dependent carrier distribution functionfsk ,r ,td in the six-
dimensional phase space. The group velocityu appearing in
s1d is given by usk ,r d=¹pEsk ,r d, whereE=Esk ,r d repre-
sents the carrier energy given by the band structure.
force F exerted on the carriers depends in general on
electric and magnetic fields and the material properties. H

rewe only consider materials with a position-independent band
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structureE=Eskd and omit the influence of magnetic fie
which reduces the external forceF to the electrostatic forc
Fsr ,td=sqEsr ,td, with s being the sign of the carrier
charge. For the band structure and the scattering rates w
a model similar to the one proposed in Ref. 36 with pho
and impurity scattering. The Monte Carlo code which is u
as a reference is described in Ref. 37.

As Boltzmann’s equation is time consuming to solve
rectly, simplifications are sought. A common simplificatio
to investigate only a few moments of the distribution fu
tion, such as the carrier concentration and the average c
energy. A moment is obtained by multiplying the distribut
function with a suitable weight functionf=fskd and inte-
grating overk-space as

kflsr ,td =
1

nsr ,td E fskdfsk,r ,tdd3k , s2d

which is normalized by the carrier concentrationnsr ,td,

nsr ,td =E fsk,r ,tdd3k . s3d

In the simplest case these weight functions are chosen
ascending powers ofk. However, to obtain macroscop
quantities such as the average velocity and the averag
ergy, commonly used weight functions are powers of
carrier energyEi and the fluxespEi anduEi. Only for para-
bolic bands the moments resulting from the two flux de
tions are related via the effective mass askpEil=m*kuEil. In
general, a more complicated relationship exists betwee
two, which depends on higher-order moments of the d
bution function.5

In the following we will consider Boltzmann’s equati
in diffusion scaling16,38,39

k
]f

]ts
+ u ·¹r s

f + F ·¹ks
f =

1

k
Qsffg, s4d

where the Knudsen number

k =
t0u0

x0
s5d

appears as a scaling parameter representing the mea
path t0u0 relative to the device dimension. The distribut
function will be decomposed into its symmetric and antis
metric parts as

fsk,r ,td = fSsk,r ,td + kfAsk,r ,td. s6d

By inserting s6d into s4d and equating symmetric and an
symmetric terms Boltzmann’s equation splits into
equations40

]fS

]t
+ u ·¹r fA + F ·¹pfA =

1

k2QSffSg, s7d

k2]fA

]t
+ u ·¹r fS+ F ·¹pfS= QAffAg. s8d

So far no simplifications have been introduced ands7d and
s8d are equivalent tos4d. In the diffusion limit, however

which will be assumed to hold in the following, we neglect
se

er

e

n-

e

ee

terms of second order ink, resulting in a simpler equatio
system.28,32,40 Recall that by this assumption the hydro
namic equation system7 can be transfered into the ener
transport system.5

When s7d and s8d are multiplied by the weight functio
Ei andpEi and integrated overk-space we obtain the gove
ing equations for the momentskEil and kpEil. Due to the
structure of Boltzmann’s equation additional moments
pear in these governing equations. It is a nontrivial tas
approximate these additional moments by the momentskEil
and kuEil which are taken as the unknowns of the equa
system. This is referred to as closure of the equation sy

III. GENERAL MACROSCOPIC MOMENT MODELS

In the following the equations determining the firsN
moments will be derived. The macroscopic transport e
tions are obtained by multiplying Boltzmann’s equation w
the appropriate weight functions and integrating the pro
over k space. We assume that the Brillouin zone exte
towards infinity, which is justified because the distribu
function declines exponentially.41 We apply the weight func
tions Ei and pEi with i P f0,2g to the Boltzmann equatio
given by s7d and s8d but continue with the unscaled form
The general transport model will be first formulated in te
of the unknownswi =kEil and V i =kuEil. Then, for the six
moments model, the variable transformation42 w2

=s5/3dw1
2b will be introduced. The quantityb is the kurtosis

of the distribution function and indicates the deviation fr
the Maxwellian shape. For nonparabolic bandsb is approxi-
mately in the rangef0.75–1.1g under homogeneous con
tions. Inside real devices, however, values in the rangef0.7–
4.0g have been observed.42 For instance, a value large th
one is observed in regions where a mixture of a hot and
distribution function exists. This occurs when a hot ca
gas coming from a sort of channel meets a cold gas a
other contact and has been observed in bothn+-n-n+

structures42 and MOS transistors.43 One the other hand,
value smaller than one indicates that the high-energy ta
the distribution function is less populated than the one
Maxwellian distribution with the same temperature.

The balance equations are obtained as the momen
s7d with the even weight functionsEi as40

]nwi

]t
+ ¹ · snV id − iF ·nV i−1 = − n

wi − wi,eq

ti
, s9d

where the relaxation timesti are defined as

ti = − n
wi − wi,eq

E EiQSffSgd3k

. s10d

Note that due to the choice of solution variables only
equilibrium valueswi,eq depend on the band structure.

To formulate the flux equations we apply the odd we
i 40
functionspE to s8d and obtain
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¹ · snÛi+1d − nF · swiÎ + iÛ id = nQi , s11d

with the tensorsÛi =ku ^ pEi−1l and the odd moments of t
scattering integralnQi =epEiQAffAg d3k.

Regarding the modeling of the scattering integral,
verse mobility tensorsm̂i

−1 are often introduced5 to establish
a relation betweenQi and V i analogously to the drif
diffusion model as

nQi 8 − qnm̂i
−1V i . s12d

WhenQi andV i are assumed to be collinear, we can de
scalar mobilities by

mi = − q
uV iu2

V i ·Qi
. s13d

For more rigorous models which take the flux dependen
the mobilities into account we refer to Refs. 12, 33, and
and the discussion in Ref. 34.

The fluxes can finally be written as

nV i = −
mi

q
s¹ · snÛi+1d − nF · swiÎ + iÛ idd. s14d

A. Additional closure relations

By applying the diffusion approximation and the mac
scopic relaxation time approximation a considerably sim
equation system is obtained in the form ofs9d and s14d.
However, Eq.s14d still contains the tensorsÛi which have to
be approximated using the unknowns of the equation sy
wi and V i. In the diffusion limit, the energylike tensors f

nonparabolic bands can be expressed by scalars40 as Ûi

=UiÎ, whereUi depends only on the even momentswi. We
now introduce nonparabolicity factorsHi as a generalizatio
of the definition introduced in Ref. 44 and obtainUi via the

trace ofÛi as

Ui = 1
3 tr Ûi = 2

3wiHi . s15d

These nonparabolicity correction factors equal unity in
case of parabolic bands and have been modeled as
energy-dependent using a simple analytical expression44 by
the incorporation of bulk Monte Carlo data,14 or via analytic
models for the distribution function.32

The equation system is truncated afterN equations
where we consider only even numbersN. The highest-orde
solution variable iswN/2−1. However, in the highest-ord

equation the momentÛN/2 appears which has to be expres
as a function of the available moments. For fourth-order
ments, a heated Maxwellian distribution is often used to
rive such a relation6,7,14 which gives for parabolic bands

w2 = 5
3w1

2. s16d

In the case of the six moments model the closure of
highest-order model is very critical. Even for closure r
tions that appeared to reasonably describe the sixth mo
in inhomogeneous cases nonphysical oscillations in th
sults were obtained. In the following the closure relati

that have been considered are described.
f

er

-

nt
-

1. Maximum entropy method

The maximum entropy principle yields, for a given se
prior information, a density which contains least additio
information in the sense of Shannon. A maximum entr
approach to the closure problem was applied
Levermore.45 A physical approach based on the maxim
entropy principle was initiated by Anile30 within the frame
work of extended thermodynamics. Note, however, tha
maximum entropy method itself has been criticized by
eral authors.46–48

According to the maximum entropy principle49–51 a dis-
tribution function model can be obtained by requiring th
maximizes the entropy

s= − kBE sf ln f − fdd3k . s17d

In the case of a six moments model in the diffusion appr
mation this results in a distribution function with a symm
ric part equal to

fSsEd = A expsa1E + a2E2d. s18d

The parameters of this analytical distribution function
determined by the unknowns of the transport modeln, w1,
andw2. The momentw3 can then be calculated as a funct
of the lower-order moments.42 Closed form solutions exi
only for fourth-order modelssa2=0d and parabolic bands a
s18d has therefore, to the best of our knowledge, not b
used to close higher-order transport models.51 Despite this
another more stringent restriction becomes evident at c
inspection: for the six moments model the distribution fu
tion s18d can only be given for a restricted set of momentsw1

andw2. For parabolic bands the following inequality has
be fulfilled

3
5 ø b ø 1. s19d

This means thats18d cannot be used to represent the di
bution function inside the drain region of MOS transis
where b.1 is observed in Monte Carlo simulations. O
way to resolve this issue is to account for a superpositio
a hot and cold distribution function explicitly42 which, how-
ever, requires heuristic assumptions42,52 and makes the clo
sure relations quite complicated.

2. Grad’s method

Expansions of the distribution function around a M
wellian distribution are frequently used in theoretical ph
ics.

fSsEd = A expS−
E
a1
Ds1 + a2E + a3E2 + ¯ d. s20d

The parametersal can be related to orthogonal Legendre
Hermite polynomials53,54 or to a Grad-type expansion.51,55,56

Expressions20d can also be considered as a linearizatio
the maximum entropy distribution function.57 Best results ar
obtained by settinga1=kBT. The parametersA, a2, and a3

were determined by matching the even moments.42 For para

bolic bands expressions20d can be easily integrated analyti-
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cally and w3 can be approximated by the lower-order m
ments as

w3 = 35
9 w1

3s3b − 2d. s21d

Unfortunately, these expansions around a Maxwellian d
bution converge very poorly to realistic distribution fu
tions and require a high order in the polynomial to reprod
features like the thermal tail,42 which explains the large num
ber of required moments reported for such trans
models.58,59

Other problems associated withs20d are that due to th
polynomial fSsEd has several roots and thus becomes n
tive. However, as long as the resulting moments remain
tive, this has often been considered a cosmetic problem
the particular case ofs21d we see, thatw3 becomes negativ
for b,2/3. Although such a small value ofb has not bee
observed in Monte Carlo simulations, they do occur in
six moments model closed withs21d, in particular during th
Newton procedure.

3. Generalized Maxwellian closure

In Ref. 28 we proposed to use a generalized Maxwe
closure

w3 = 35
9 w1

3bc, s22d

with c an integer in the rangef0–3g. Stable implementation
were only obtained forc=3, whereas valuescø2 show pro
nounced oscillations in the numerical solution. However
results obtained fromc=2, though often unstable, appea
to better reproduce the Monte Carlo results. We now ta
somewhat different approach: by requiring consistency
bulk Monte Carlo simulations we obtainc from a best matc
of w3 to w3

MC, which givesc=2.7. Note that Sonodaet al.27

usedc=1.

4. Cumulant closure

From a theoretical point of view probability distributio
are better described in terms of cumulants than in term
moments.60 In particular it can be shown that an exact
scription of the displaced and heated Maxwellian distribu
function requires only the first three cumulants, with all o
cumulants being exactly equal to zero. The higher-order
ments, one the other hand, do not vanish.61 This motivated u
to apply the method of cumulants to the closure prob
Using a cumulant expansion method for device simula
was also suggested in Ref. 61. In Ref. 56 the cumu
method was used for the solution of the Boltzmann equa
in the context of gas dynamics.

In probability theory and statistics, the characteri
function g is defined via the Fourier transform of the dis
bution function56,61

gsj,r ,td =E fsp,r ,tdexpsij ·pdd3p. s23d

61
Considering the Taylor expansion of lnsgd we get
-
-
n

f

-

.

t

lnsgd = o
i=0

`
in

n!
Ci1¯in

snd ji1
¯ jin

, s24d

whereCi1¯in

snd in the nth cumulant.
The first cumulant is equal to the logarithm of the t

mass of the distribution functionshence zero for probabili
distribution functionsd. The second cumulant is the varian
Cumulants of order greater than two are measures o
non-Maxwellian shape. The third and fourth cumulant
related to the skewness and the kurtosis, respectively.
distribution function with unit variance the kurtosis is eq
to the fourth cumulant. Calculations simplify if central m
ments are used.

In the case of the six moments model we thus obtain
the highest-order moment

w3 = 35
9 w1

3s3b − 2d. s25d

The cumulant closure is a type of Maxwellian closure wh
is distinguished from a theoretical point of view. Intere
ingly, in the diffusion approximation the sixth moment c
culated with the cumulant methods25d is equivalent to th
closure derived via Grad’s methods21d, which is not the cas
for higher-order moments where additional nonlinear te
appear.56 Note that these closures are a linear combinatio
the generalized Maxwellian closuress22d with the values o
c=0 andc=1.

5. Comparison of the closure relations

A comparison of the various closure relations is give
Fig. 1 usingw1 andw2 from Monte Carlo simulations. Th
top figure shows the silicon bulk result with a doping c
centration ofND=1018 cm−3. The cumulant closure and t
Grad expansion give reasonable results only for low
conditions. Good results are obtained for the empirical
sure relation withc=2.7, which was found by a least squ
fit over the energy region 0–1.5 eV. In the bottom figure
results for a 100 nmn+-n-n+ structure are shown. A lea
square fit again delivered a value close toc=2.7. Best result
where obtained in the “channel” region, while clearly
models become inaccurate inside the “drain” region. Th
due to the complicated form of the distribution funct
which differs significantly from the bulk case.42 Further re
search on this topic might be in order.

B. The nonparabolic six moments model

Ignoring the terms¹Hi as in Ref. 14 the fluxes can
nally be written as

nV i = −
2miHi+1

3q
S¹snwi+1d − nFwi

3 + 2iHi

2Hi+1
D . s26d

We now introduce the variable transformation42

w1 = 3
2kBT, w2 = 15

4 kB
2T2b, w3 = 105

8 kB
3T3g. s27d

The quantityg depends on the applied closure relation
equalsbc for the generalized Maxwellian closure ands3b
−2d for the cumulant closure. We then obtain
nV0 = − A0s¹snkBTd − nFh0d, s28d
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nV1 = − A1s¹snkB
2T2bd − nFh1kBTd, s29d

nV2 = − A2s¹snkB
3T3gd − nFh2kB

2T2bd, s30d

with the auxiliary quantities

Ai =
miHi+1

2iq

1

3p
j=0

i+1

s1 + 2jd, s31d

hi =
3 + 2iHi

s3 + 2idHi+1
. s32d

Note that for parabolic bandshi =1 holds.
The balance equations are obtained as

]n

]t
+ ¹ · snV0d = 0, s33d

C1
]nT

+ ¹ · snV1d − F ·nV0 = − nC1
T − Teq, s34d

FIG. 1. Comparison of the various closure relations calculated by a M
Carlo postprocessing step. The top figure shows the silicon bulk resul
doping concentration ofND=1018 cm−3 while the bottom figure shows th
result for a 100 nmn+-n-n+ structure. The generalized Maxwellian clos
gives better results than the cumulant closure.
]t t1
C2
]nT2b

]t
+ ¹ · snV2d − 2F ·nV1 = − nC2

T2b − Teq
2 beq

t2
,

s35d

with C1=3kB/2 andC2=15kB
2 /4. The equilibrium valuesTeq

and beq are calculated from the equilibrium solution
Boltzmann’s equation for the nondegenerate case whi
the Maxwell distribution. Note that only for parabolic ban
the familiar relationw1=3kBTL /2 is obtained. Due to th
nonparabolic band structure the equilibrium carrier temp
ture defined vias27d is different from the lattice temperatu
and we haveTeq<309.452 K andbeq<1 at TL=300 K.
These are also the values used for the Dirichlet boun
conditions forT andb.

IV. MODELING OF THE PHYSICAL PARAMETERS

In addition to the mobilitiesm0, m1, and m2, the flux
equationss28d–s30d contain the nonparabolicity factorsH1,
H2, and H3, while the balance equationss33d–s35d contain
the relaxation timest1 andt2. These parameters are diffic
to model since they all depend on the actual shape o
distribution function and on the band structure. They th
fore contain information on hot-carrier and nonparabol
effects. In addition, the mobilities and relaxation times
pend on the scattering rates. Simple empirical models a
ones used in Ref. 28 did not deliver satisfactory result
particular, a consistent comparison with Monte Carlo si
lations is difficult, because the resulting transport model
not reproduce the Monte Carlo results in the homogen
case. It is therefore problematic to judge the validity of th
models in the inhomogeneous case. To avoid uncerta
arising from this issue we extract all physical parameters
function of the doping concentration and the average en
from homogeneous Monte Carlo simulations. The ratio
the higher-order mobilitiesm1 andm2 to the carrier mobility
m0, the relaxation timest1 and t2, and the nonparabolici
factors Hi are shown in Fig. 2 for silicon with a dopin
concentration of 1018 cm−3.

All these transport parameters are then plugged int
macroscopic transport models as a function of the ave
energy. Since all model parameters are obtained from
Monte Carlo simulations the transport models are fre
fit-parameters which leaves us with “no knobs to turn62

Having too many adjustable parameters is a particular in
venience inherent in many energy-transport models bas
analytical models for the mobilities and relaxation times.5 To
avoid fit-parameters is essential for higher-order mo
since the interplay between the various parameters is h
complex and the numerical stability of the whole trans
model depends significantly on the choice of these pa
eters. In particular, the model based on the Monte Carlo
outperforms its counterparts based on analytical mob
models28 significantly, both in terms of numerical stabil
and in the quantitative agreement of the simulation re

with Monte Carlo device simulations.
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V. NUMERICAL PROPERTIES

A Scharfetter–Gummel style discretization63 was ini-
tially used for the discretization of the parabolic six mome
model proposed in Ref. 28. Several suggestions for the
cretization of energy-transport equations which gener
the Scharfetter–Gummel method can be found in litera
Methods of this kind which we studied recently are Me
erzhagen’s model,64 Forghieri’s method,18 and variant
thereof.19 All these methods can be unified in the framew
of an optimal artificial diffusion method.21 In addition, a
double grid variant was implemented.65 All these variant

65

FIG. 2. Ratio of the higher-order mobilitiesm1 andm2 to the carrier mobility
m0 stopd, the relaxation timest1 and t2 smiddled; and the nonparabolici
factorsHi sbottomd for a doping concentration of 1018 cm−3.
were evaluated, but the observed differences were negli-
-

.

gible ssee the Appendix for details on some of the disc
zation schemesd. In particular for then+-n-n+ structure stud
ied in this article, the convergence behavior was found t
excellent. For instance, the number of Newton iteration
comparable to those required for the solution of the ene
transport models while the condition of the equation sys
was found to be only slightly degraded. For the limited n
ber of devices considered so far we found that the six
ments model converged at maximum bias with roughly
same number of iterations as the energy-transport m
starting from the equilibrium initial guess. Differences in
overall simulation time are related to the increased sy
matrix size and the slightly poorer condition of the equa
system. A comparison of the required computation time
the six moments model gave approximately a factor
over the drift-diffusion model and a factor of 2 for t
energy-transport model. We consider this a reasonable
for the improved accuracy to expect from the six mom
model. For the sake of completeness it is worth mentio
that the simulations based on the macroscopic models t
couple of seconds while the self-consistent Monte C
simulations required several hours.

In a numerical implementation some caution is requ
regarding the nonparabolicity factors. In equilibrium no
rent is allowed to flow and all other fluxes must be zer
well. As can be easily derived froms28d–s30d this requires
the conditions

H2 =
H1

5beq
s3 + 2H1d, H3 =

H1beq

7geq
s3 + 4H2d s36d

to be fulfilled in equilibrium. In this work these paramet
are extracted from Monte Carlo simulations. At low fie
they show large stochastic errors andH2 and H3 calculated
from H1

MC usings36d differ from the Monte Carlo results b
roughly 1%. Unfortunately, the transport equations are
sensitive to small changes in the nonparabolicity factors
instance, for the 50 nm device this discrepancy results
current flow of 20 nA/mm and a temperature difference
20 K inside the junction regions instead of the expe
equilibrium values. Therefore,H2 andH3 are calculated from
H1 using s36d for carrier temperatures close to equilibriu
thereby enforcing the proper equilibrium response.

VI. EVALUATION AND DISCUSSION

To investigate the accuracy of the six moments m
we consider a series of one-dimensionaln+-n-n+ structures
These structures display similar features as contemp
MOS and bipolar transistors like a pronounced velocity o
shoot and a mixture of a hot and a cold distribution func
in the “drain” region. With these structures it is possible
study the basic behavior of macroscopic transport mode
very small devices without the additional levels of comp
ity introduced by two-dimensional MOS devices. The dop
concentrations were set to 531019 cm−3 and 1017 cm−3 and
the channel-length was varied from 1000 nm down to 20
Since the accuracy of the transport models was found
bias-dependent, the bias-conditions were chosen in s

way that a maximum electric field of 300 kV/cm or
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600 kV/cm was maintained. In addition to the six mome
model we consider the corresponding energy-transport m
where the energy-flux relation is closed with a heated M
wellian distribution. That corresponds with settingb to its
equilibrium value ins29d. By this measure the equation
the kurtosis becomes decoupled from the other equation
can be calculated in a postprocessing step.27 One might argu
that this closure relation is not that important and that for
modeling of hot-carrier effects this decoupled equation
tem gives a sufficiently accurate estimate forb. We will see
in the sequel that this is not the case. For the sake of
pleteness, we will also show the results of the correspon
drift-diffusion model where the tabulated mobility is used
a function of the local electric field.

A comparison of the average velocityV0 and the kurto
sis b obtained from the macroscopic models with the Mo
Carlo results is shown in Figs. 3 and 4 for three devices.
spurious velocity overshoot is significantly reduced in the
moments model, consistent with previous results,66 while the
kurtosis produced by the decoupled six momentssenergy-
transportd model is only a poor approximation to the Mo
Carlo results for shorter channel-lengths. An accurate k
sis, however, is a prerequisite for the modeling of hot ca
effects.

The strong influence of the closure relation on the re
ing velocity profile and the kurtosis is depicted in Fig.
Since convergence could not be obtained for the cum
and Grad closures for bias voltages larger than a few the
voltages only the generalized Maxwellian closures22d is
shown. It was found that when the value ofc approached 2
the convergence of the equation system was heavily aff
until convergence could not be obtained at all. The re
shown in Fig. 5 forc=2 was obtained by gradually reduci
c starting fromc=2.7. Although convergence was reac
squadratic behavior in the Newton methodd and the residu
and updates where reduced to very small values, wiggl
the solution can be observed. These wiggles disappear
c is increased. The optimum bulk valuec=2.7, however
delivered satisfactory results also in the inhomogen
case.

The errors in the simulated terminal currents of the m
roscopic transport models relative to the Monte Carlo s
lation are shown in Fig. 6 as a function of the channel-len
With the occurrence of nonlocal effects the accuracy of
drift-diffusion model begins to gradually degrade
channel-lengths smaller than 250 nm. Interestingly, fo
maximum bias of 300 kV/cm, a maximum error of 27%
reached at 65 nm and for a further reduction of the chan
length the error begins to gradually decrease. For a m
mum bias of 600 kV/cm, however, the maximum erro
31% and occurs at 36 nm and for a further reduction o
channel-length the error decreases only moderately. The
son for this peculiar behavior will be explained shortly.

The higher-order transport models, on the other h
show a different behavior: They remain accurate down
certain channel-length but continuously lose their accu
for further decreased channel-lengths. In general, how
contrary to the drift-diffusion model, the accuracy of

higher-order moments increases for increasing bias. Th
l

d

-

-
g

-

t
l

d
t

n
n

s

.

-
-

a-

,

r,

energy-transport model shows an error of 10% at 65 nm
55 nm for 300 kV/cm and 600 kV/cm, respectively. For
six moments model we found the 10% error boundar
42 nm and 30 nm, respectively, while the drift-diffus
model reaches the 10% mark at 200 nm. However, while
error in the drift-diffusion model shows a conservative
havior by staying within reasonable bounds, the erro
higher-order transport models deteriorates below a ce
channel-length. In particular, for a maximum electric field

FIG. 3. Comparison of the velocity profile delivered by the macrosc
models with the Monte Carlo results. The six moments modelsSMd, the
energy-transport modelsETd, and the drift-diffusion modelsDDd are shown
e600 kV/cm, the energy-transport model delivers the same
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error as the drift-diffusion model at 41 nms31%d while the
error curve of the six moments model intersects the curv
the drift-diffusion model at 24 nms29%d.

A common perception is that the drift-diffusion mo
delivers smaller currents than the Monte Carlo model. Th
only partly correct. To understand this peculiar behavior
have to look at the terminal currents as a function of
terminal voltage as shown in Fig. 7. The bias-dependen
the accuracy can be clearly seen. In particular, all ma
scopic transport models give too large currents close to
librium. This overestimation of the near-equilibrium cond
tance is largest for the drift-diffusion model, as can be

FIG. 4. Comparison of the kurtosis delivered by the macroscopic m
with the Monte Carlo results. The six moments modelsSMd, the energy
transport modelsETd, and the drift-diffusion modelsDDd are shown.
in Fig. 8, and becomes more important for smaller devices in
f

f
-
i-

accordance with the findings of Ref. 58. When the bias
age is increased, however, the drift-diffusion model gr
ally begins to underestimate the terminal current since
local effects are not accounted for. In total, we have
different counteractive effects and only for larger app
bias we get the expected underestimation. As a consequ
there is an intersection point where terminal currents c
lated by the drift-diffusion model equal those of the Mo
Carlo model. This fact becomes more apparent when
channel-length is reduced. In the intermediate bias rang
accuracy of the currents is thus astonishingly good.

Such an intersection point seems to exist for hig
order models as well, as indicated in Fig. 7, where the
minal current of the 30 nm device predicted by the six
ments model intersects the Monte Carlo curve fo
maximum electric field of approximately 900 kV/cm. A
other indicator is the increased accuracy of the current
higher bias as apparent in Fig. 6.

VII. CONCLUSIONS

We have derived nonparabolic higher-order trans
models for semiconductor device simulation. All phys
parameters are taken from bulk Monte Carlo simulati
The particular focus of this work is on the nonparabolic
moments model. In that context the closure of the high

FIG. 5. Influence of the closure relation on the velocity and the kurt
Clearly visible are the numerical instabilities arising fromc=2.
order moment was identified as being critical for the numeri-
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cal stability and a model consistent with the homogen
Monte Carlo data has been proposed. A comparison o
terminal currents predicted by these models with the re
from self-consistent Monte Carlo simulations reveals s
interesting properties. First of all, the heated Maxwellian
sure commonly used in energy-transport models has a
portant impact on the accuracy of the resulting trans
model. In particular, the six moments model, which avo
this closure relation, predicts more accurate terminal
rents. For example, if a 10% error compared to the M
Carlo result is defined as acceptable, the drift-diffus
model reaches this error around a channel-length of app
mately 200 nm, the energy-transport model at 55 nm,
the six-moments model at 30 nm. Two findings regarding
drift-diffusion model are of particular interest: first, the ov
estimated near-equilibrium conductance which is cou
acted by the missing velocity overshoot gives a smaller
derestimation of the terminal currents as expected. Seco
this underestimation behaves quite conservatively, that
remains below 30% for typical bias conditions. The hig
order moment models, on the other hand, behave differ
because below a minimum channel-length the errors
crease. Above this critical channel-length which is so
where around 25 nm for the six moments model, the

FIG. 6. Comparison of the terminal currents delivered by the macros
models as a function of the channel-length. The bias voltage was adap
each device in such a way that the maximum electric field is approxim
kept constant.
moments model delivers considerably better results than th
e
s

-
t

-

i-

-
-
y,
t

y
-

drift-diffusion model. In particular, the calculated concen
tion, average energy, and average of the square of the e
show good agreement with the Monte Carlo result, w
allows accurate modeling of hot-carrier effects like imp
ionization and hot-carrier injection into the gate. This is
possible to such a degree with the energy-transport m
not to mention the drift-diffusion model.

APPENDIX: DISCRETIZATION SCHEMES

Here some of the discretization schemes that have
considered are briefly described. For example, we us
generalization of the discretization proposed in Ref.
which is based on the general form of the flux relations

nV i = − AiS¹sjiWid − FhisjiWid
1

Wi
D , sA1d

with

j0 = n, W0 = kBT, sA2d

j1 = nkBT, W1 = kBTb, sA3d

j2 = nkB
2T2b, W2 = kBTg/b. sA4d

Applying the standard assumption of Scharfetter–Gum
type discretization schemes63 that the projected fluxnV i /Ai

r

FIG. 7. Comparison of the terminal currents delivered by the macros
models for two short devices. As can be seen, the accuracy depends
bias condition.
ebetween two gridpointsm and l is constant and that the en-
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ergy associated to each fluxWi varies linearly on the edg
gives the following discretization:

nVi
m,l = −

Āi

Dx
W̃isji

lBsYid − ji
mBs− Yidd, sA5d

Yi = −
sqhiDc + DWi

W̃i

, sA6d

W̃i =
DWi

lnsWi
l/Wi

md
, sA7d

whereB is the Bernoulli function. The mobilitymi and the

nonparabolicity factorsHi+1 appearing inĀi andh̄i are evalu

ated as a function ofT̄=sTm+Tld /2. For the balance equ
tions which have to be only marginally modified for the n
parabolic case the discretization from Ref. 28 is use
slightly different variant is obtained by assuming t
nV i / sAiWid is constant between two gridpoints. This assu
tion might be justified by considering that the carrier mob
ties roughly behave like 1/Wi which makesAiWi roughly

FIG. 8. Near-equilibrium small signal response of the macroscopic m
compared to the Monte Carlo results. All macroscopic models overest
the near-equilibrium conductivity but the inclusion of additional mom
improves the result. Note how this effect becomes stronger for decre
channel-length.
constant. We thus obtain
nVi
m,l = −

Āi

Dx
W̃i

2S ji
l

Wi
l BsYid −

ji
m

Wi
mBs− YidD , sA8d

Yi = −
sqhiDc + 2DWi

W̃i

. sA9d

However, the differences in the results when usingsA5d and
sA8d were found to be marginal for the devices conside

A somewhat different variant which included the¹Hi

term was also considered. The flux equations are then o
form

nV i = BiS¹sjiWid − FsjiWid
1

Wi
D , sA10d

with Bi =Ai /Hi+1 and

j0 = n, W0 = kBTH1, sA11d

j1 = nkBTh1H2, W1 = kBTb/h1, sA12d

j2 = nkB
2T2bh2H3, W2 = kBTg/sbh2d. sA13d

For the discretization we obtain with the assump
nV i /Bi <const

nVi
m,l = −

Bi

Dx
W̃isji

lBsYid − ji
mBs− Yidd, sA14d

Yi = −
sqDc + DWi

W̃i

. sA15d

The discretization fornV i / sBiWid<const can be obtained a
cordingly. Although more accurate in theory, as the ave
ing of the nonparabolicity factors is avoided, neither of th
variants gave as good results as the variants based o
neglected¹Hi terms.
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