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We derive higher-order macroscopic transport models for semiconductor device simulation from
Boltzmann’s transport equation using the method of moments. To obtain a tractable equation set
suitable for numerical implementation the validity of the diffusion limit will be assumed which
removes the convective terms from the equation system. The infinite hierarchy of equations is then
truncated at the orders twddrift-diffusion mode), four (energy-transport model and six.
Nonparabolicity correction factors are included in the streaming terms. Closure relations for the
highest-order moments are obtained from a cold Maxwell distributioift-diffusion) and a heated
Maxwell distribution(energy-transpoyt For the six moments model this issue is more complicated.

In particular, this closure relation is identified to be crucial both in terms of accuracy and in terms
of numerical stability. Various possible closure relations are discussed and compared. In addition to
the closure of the highest-order moment, various transport parameters such as mobilities and
relaxation times appear in the models and need to be accurately modeled. Particularly for
higher-order transport models this is a complicated issue and since the analytical models used in our
previous attempts did not deliver satisfactory results we extract all these parameters using
homogeneous Monte Carlo simulations. Since all macroscopic transport models are based on rather
stringent assumptions a practical evaluation is mandatory. Therefore, the proposed six moments
model, a corresponding energy-transport model, and the drift-diffusion model are carefully
compared to self-consistent Monte Carlo simulations2@5 American Institute of Physics
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I. INTRODUCTION Technology CAD(Computer Aided Designengineers. The
drift-diffusion model comprises the first two moments of
Carrier transport in modern semiconductor devices iBoltzmann’s equation and is as such the lowest-order trun-
commonly investigated using Boltzmann's transport equacation. More accurate models which alleviate some of the
tion, which is solved either directly by means of the Montemost stringent assumptions underlying the drift-diffusion
Carlo method or by methods based on an expansion of theequations have already been proposed over 40 year&’ago.
distribution function in momentum space into a series OfGenerally speaking, the assumption that the carrier gas is in
spherical harmonics® To obtain a physically accurate pic- equilibrium with the lattice is removed by introducing a
ture of carrier transport which includes as many effects withseparate temperature for the carrier gas. However, this re-
as few approximations as possible, the Monte Carlo methoguires some additional closure relations which are commonly
is often the method of choice. However, on an engineeringierived by assuming a heated Maxwellian distribution func-
level the Monte Carlo method is inconvenient, because itjon.
requires large simulation times. In particular, the extraction  As of yet, these higher-order transport models have not
of certain device parameters is very costly, for instance tranpeen widely accepted as a viable substitute. The reasons for
sit frequencies, small-signal parameters, threshold voltagegis are manifold: A big advantage of the drift-diffusion
and in general situations where Only small current levels argnodel is that it contains 0n|y one transport parameter, the
involved. Therefore simpler methods have been derive¢arrier mobility. This mobility can in principle be measured
which, for instance, focus only4on the first few moments ofas a function of various parameters such as the applied elec-
Boltzmann’s transport equatior:® tric field, doping concentration, and temperature, fitted by
Since the advent of the first simulators that solved thesyjtable analytical expressioftd,and inserted in the trans-
semiconductor equations on one- or two-dimensional geomyort model. Unfortunately, this is not the case for higher-
etries, the drift-diffusion modélhas been the workhorse of order transport models. For instance in the case of the
energy-transport model® we have in addition to the carrier
¥Electronic mail: Grasser@iue.tuwien.ac.at mobility the energy-flux mobility and the energy-relaxation
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time. Since these parameters cannot be directly measureaglected. There are basically three reasons why this as-
they have to be either modeféd? or extracted from Monte sumptions is so widespread: first, carriers in semiconductors
Carlo simulationg®****Neither of these options is without are considered to form a collision dominated system, espe-
problems. Analytical models for the parameters, although aceially at room temperature. Second, the modeling of these
curate on a qualitative level, often fail to reproduce simula-convective terms is rather difficult and third, they introduce
tion results obtained from Monte Carlo methods. The anahyperbolic modes into the equation system, which makes it
lytical models use a couple of parameters which are ofterconsiderably more difficult to solv&.Monte Carlo simula-
slightly adjusted to obtain the desired result for a particulaitions show, however, that the convective energy can be of the
application. Unfortunately there is no unique parameter sesame order than the thermal energy, particularly in modern
that fits all requirements, and there is always the danger thaubmicron deviced:
the validity of a transport model is extended heuristically by ~ Another critical approximation concerns the modeling of
adjusting improper parameters. It is thus difficult to assesghe scattering integral in Boltzmann's equatfolt. Rather
whether the model is predictive or not. As an alternative, thesimple expressions are obtained by applying the macroscopic
extraction of the transport parameters from Monte Carloelaxation time approximation where mobilities are intro-
simulations has been proposed where we have two optionguced in analogy to the drift-diffusion model. These mobili-
The first one relies purely on data extracted from homogeties are then usually modeled as a function of the average
neous Monte Carlo simulatior&® whereas other research- energy only. A more rigorous treatment reveals, however,
ers have tried to identify characteristic features of transporthat the odd moments of the scattering integral depend on the
parameters by investigating inhomogeneous cases £dd moments of the distribution function and thus on all
well 1013 fluxes of the syster?> Unfortunately, closure relations of
Another subject of intense research is the numerical bethis type cause an additional coupling between the flux equa-
havior of higher-order transport models. While the drift- tions and would require a detailed description of the energy-
diffusion model is numerically robust and well like tensors to obtain an overall improvement of the transport
investigate’® a stable implementation of higher-order model™*
transport models is more difficult to obtdifit In the following we propose a refined version of our six
Fina”y, and most importanuy, many doubts regardingmoments n"lodeq8 The refined version includes the influence
the accuracy of fourth-order models like the energy-transpor@f @ nonparabolic band structure on the streaming terms.
model have been raised. It has often been observed that tifdnce the closure of the highest-order moments was found to
additional overhead imposed by these methods is not justifib€ crucial for the accuracy of the model and its numerical
able when for instance the terminal currents of advancedobustness we discuss various options and identify the most
metal-oxide-semiconductdMOS) transistors are calculated Suited one. Considerable effort has been put into studying the
where even the predictions of the simple drift-diffusion Numerical behavior and stability and we summarize our find-
model can be closer to the reference Monte Carlo result. 1Ngs. Finally, the rather stringent assumptions in the deriva-
One of the fundamental motivations to use higher—ordertion make it difficult to assess the accuracy of the final mac-
models such as energy-transport models is that they providé’sc‘)pic transport r_nodel based_ on _theoreti_cal cons_ider_ations.
the average carrier energy which can then be used for mod-nerefore, a practical evaluation is required which is at-
eling hot-carrier effects. Unfortunately, the average carrief€Mpted in the last sections of this article.
energy alone has proven to be insufficient to describe effects
like impact-ionizatioﬁ2’23 and hot-carrier gate currerfts® Il. THE SCALED BOLTZMANN EQUATION
because the average carrier energy bears no information
about the high-energy tail of the distribution function which ~ The macroscopic transport models are derived from the
is critical in these circumstances. Therefore, empirical nonsingle particle Boltzmann transport equaffon
local models have to be usé¥Additional information about f
the distribution function and the high-energy tail in particular ~ —-+u -V f+F-Vf=Q[f] (1)
can be obtained by using additional moments for its charac-
terization. Models utilizing six moments have been pro-using the method of moments. Boltzmann’s equation is a
posed, which add the kurtosis of the distribution function assemiclassical kinetic equation, which assumes that the mo-
an additional solution variabfé:®® These models have tion of carriers is governed by Newton's laws. The scattering
proven to give significantly better descriptions of the distri-operatorQ represents the rate of changefaiue to collisions
bution function?® Here we show that this extended momentand is modeled via Fermi's Golden Rule. We limit the dis-
hierarchy also improves the predicted velocity profiles anctussion to the nondegenerate case and neglect carrier—carrier
terminal currents. scattering. The solution of Boltzmann’s equation is the time
There are many critical issues concerning the validity ofdependent carrier distribution functiditk,r,t) in the six-
available macroscopic transport models, mainly related talimensional phase space. The group veloaigppearing in
the assumptions made in their derivation. One fundamentdll) is given byu(k,r)=V,&(k,r), where E=£(k,r) repre-
assumption underlying basically all macroscopic transporsents the carrier energy given by the band structure. The
models in practical use for semiconductor device simulatiorforce F exerted on the carriers depends in general on the
is that some sort of diffusion approximation holds. As a con-electric and magnetic fields and the material properties. Here,
sequence, all convective terms in the transport equations ame only consider materials with a position-independent band
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structure£=£(k) and omit the influence of magnetic fields terms of second order ir, resulting in a simpler equation
which reduces the external for€eto the electrostatic force systent®*?*° Recall that by this assumption the hydrody-
F(r,t)=scE(r,t), with s being the sign of the carrier's namic equation systefrtan be transfered into the energy-
charge. For the band structure and the scattering rates we usansport systenrﬁ.
a model similar to the one proposed in Ref. 36 with phonon  When (7) and(8) are multiplied by the weight function
and impurity scattering. The Monte Carlo code which is usec' andp&' and integrated ovek-space we obtain the govern-
as a reference is described in Ref. 37. ing equations for the momentg') and (p&'). Due to the
As Boltzmann’s equation is time consuming to solve di-structure of Boltzmann’s equation additional moments ap-
rectly, simplifications are sought. Acommon simplification is pear in these governing equations. It is a nontrivial task to
to investigate only a few moments of the distribution func-approximate these additional moments by the moméfiis
tion, such as the carrier concentration and the average carriand(u&') which are taken as the unknowns of the equation
energy. A moment is obtained by multiplying the distribution system. This is referred to as closure of the equation system.
function with a suitable weight functiogp=¢(k) and inte-
grating overk-space as

(A1) = n(:. ; J ¢(k)f(k,r,t)d3k, ) Ill. GENERAL MACROSCOPIC MOMENT MODELS
' In the following the equations determining the fifst
which is normalized by the carrier concentratiofm , t), moments will be derived. The macroscopic transport equa-
tions are obtained by multiplying Boltzmann’s equation with
n(r,t) :J f(k,r,t)d%k. 3 the appropriate weight functions and integrating the product

over k space. We assume that the Brillouin zone extends

In the simplest case these weight functions are chosen to d@wards infinity, which is justified because the distribution
ascending powers ok. However, to obtain macroscopic function declines exponentialfy.We apply the weight func-
quantities such as the average velocity and the average efions &' and p&' with i €[0,2] to the Boltzmann equation
ergy, Common|y used We|ght functions are powers of th&iven by(?) and (8) but continue with the unscaled forms.
carrier energy€ and the fluxep& andu&'. Only for para- ~ The general transport model will be first formulated in terms
bolic bands the moments resulting from the two flux defini-Of the unknownsw;=(£") and V;=(u&'). Then, for the six
tions are related via the effective mass(p&’)=m‘(u&'). In  moments model, the variable transformatfon w,

general, a more complicated relationship exists between the(5/3wiB will be introduced. The quantit is the kurtosis
tWO, which depends on higher-order moments of the d|str|_0f the diStI’ibutiOI’l function and indicates the deViation from

bution function® the Maxwellian shape. For nonparabolic bamlis approxi-
In the following we will consider Boltzmann's equation Mately in the rang¢0.75-1.] under homogeneous condi-
in diffusion scaling®3¢° tions. Inside real devices, however, values in the rd0ge-
4.0] have been observéd.For instance, a value large than
K‘?_f +u-V, f+F -V, f= EQS[f], (4)  Oneis observed in regions where a mixture of a hot and cold
dts s K distribution function exists. This occurs when a hot carrier

gas coming from a sort of channel meets a cold gas at the

other contact and has been observed in bathn-n*

= Too ) structure®’ and MOS transistor§ One the other hand, a
Xo value smaller than one indicates that the high-energy tail of

. . the distribution function is less populated than the one of a
appears as a scaling parameter representing the mean fr

ffaxwellian distribution with the same temperature.
path 75U, relative to the device dimension. The distribution P

; . S ) ) The balance equations are obtained as the moments of
function will be decomposed into its symmetric and antlsym—(7) with the even weight function§' ag®
metric parts as

f(k,r,t) = fo(k,r,0) + kfa(K,T 1) () anw, W, — Wi oq

where the Knudsen number

—+ V.-(nVy)-iF-nVi_;=—-n (9)

By inserting (6) into (4) and equating symmetric and anti- an 7
symmetric terms Boltzmann’s equation splits into two
equation®’ where the relaxation times are defined as

s 1 W

E"'u 'VrfA+F'foA:EQifs]u (7) Ti:_an__ (10)

J E'Qd fgld%k
of
K2j\+u -V, fs+F - Vpfs= Qalfal. (8)

Note that due to the choice of solution variables only the
So far no simplifications have been introduced &idand  equilibrium valuesw; . depend on the band structure.
(8) are equivalent ta4). In the diffusion limit, however, To formulate the flux equations we apply the odd weight
which will be assumed to hold in the following, we neglect functionsp&' to (8) and obtaif’
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V - (nU;,y) - nF - (w] +iU;) = nQ;, (12)

with the tensorsti:<u®pS“1> and the odd moments of the
scattering integrahQ;= [p& Qa[fo] dk.
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1. Maximum entropy method

The maximum entropy principle yields, for a given set of
prior information, a density which contains least additional
information in the sense of Shannon. A maximum entropy

Regarding the modeling of the scattering integral, in-gpproach to the closure problem was applied by

verse mobility tensor;&i‘l are often introducedto establish
a relation betweenQ; and V; analogously to the drift-
diffusion model as

nQ; = - anx V. (12

WhenQ; andV; are assumed to be collinear, we can define

scalar mobilities by
Vif?

V..o (13

Mi=—q

For more rigorous models which take the flux dependence of

Levermore®™ A physical approach based on the maximum
entropy principle was initiated by Anit@ within the frame-
work of extended thermodynamics. Note, however, that the
maximum entropy method itself has been criticized by sev-
eral author§®®

According to the maximum entropy princiﬁ?éE’la dis-
tribution function model can be obtained by requiring that it
maximizes the entropy

s= —ka (fInf-fHdk. (17

the mobilities into account we refer to Refs. 12, 33, and 4Qp, the case of a six moments model in the diffusion approxi-

and the discussion in Ref. 34.
The fluxes can finally be written as

nv, :—%(v -(nU,.y) = nF - (il +i0)). (14)

A. Additional closure relations

By applying the diffusion approximation and the macro-
scopic relaxation time approximation a considerably simple
equation system is obtained in the form @) and (14).
However, Eq(14) still contains the tensotd; which have to
be approximated using the unknowns of the equation syste
w; and V. In the diffusion limit, the energylike tensors for

nonparabolic bands can be expressed by séllas Ui

=Uif, whereU; depends only on the even momemts We
now introduce nonparabolicity factok$ as a generalization
of the definition introduced in Ref. 44 and obtain via the

trace off)i as

Ui:%tr UizgwiHi. (15)

m

mation this results in a distribution function with a symmet-
ric part equal to

fo(E) = Aexpa€ + aE?). (18)

The parameters of this analytical distribution function are
determined by the unknowns of the transport madelv,,
andw,. The momentv; can then be calculated as a function
of the lower-order momentS. Closed form solutions exist
pnly for fourth-order model§a,=0) and parabolic bands and
(18) has therefore, to the best of our knowledge, not been
used to close higher-order transport mod’élaespite this,
another more stringent restriction becomes evident at closer
inspection: for the six moments model the distribution func-
tion (18) can only be given for a restricted set of moments
andw,. For parabolic bands the following inequality has to
be fulfilled

i<p=1.

(19

This means that18) cannot be used to represent the distri-
bution function inside the drain region of MOS transistors
where B>1 is observed in Monte Carlo simulations. One

These nonparabolicity correction factors equal unity in thehay to resolve this issue is to account for a superposition of

case of parabolic bands and have been modeled as eith@

energy-dependent using a simple analytical expreséiby,
the incorporation of bulk Monte Carlo datapr via analytic
models for the distribution functioff.

The equation system is truncated aftdr equations,
where we consider only even numb&isThe highest-order
solution variable iswy,,_;. However, in the highest-order

fot and cold distribution function expliciffwhich, how-
ever, requires heuristic assumptién¥ and makes the clo-
sure relations quite complicated.

2. Grad’s method

Expansions of the distribution function around a Max-

equation the momertd,,, appears which has to be expressedwe”ian distribution are frequently used in theoretical phyS-
as a function of the available moments. For fourth-order mo+Cs.

ments, a heated Maxwellian distribution is often used to de-

rive such a relatioh”**which gives for parabolic bands
w, = 2ws. (16)

E
>(1+a25+a352+ ).
2]

f&)=A exp( (20)

The parameterg, can be related to orthogonal Legendre or

In the case of the six moments model the closure of thédermite polynomial®*>*or to a Grad-type expansigh>>>°

highest-order model is very critical. Even for closure rela-

Expression(20) can also be considered as a linearization of

tions that appeared to reasonably describe the sixth mometiie maximum entropy distribution functiofiBest results are
in inhomogeneous cases nonphysical oscillations in the resbtained by settinga;=kgT. The parameterd\, a,, and a;
sults were obtained. In the following the closure relationswere determined by matching the even momé&h&or para-

that have been considered are described.

bolic bands expressiof20) can be easily integrated analyti-
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cally andw; can be approximated by the lower-order mo- z in
ments as In(g)=> EC(”) &6 (24)
i=0 '

iy in n
35
ws=2w3(3B8-2). (21)
ot whereC" . in the nth cumulant.
Unfortunately, these expansions around a Maxwellian distri-

1
. RN The first cumulant is equal to the logarithm of the total
bution converge very poorly to realistic distribution func- asq of the distribution functiothence zero for probability
tions and require a high order in the polynomial to reproduc

. ; s Qistribution functions The second cumulant is the variance.
features like the thermal talif, which explains the large num- =~ iants of order greater than two are measures of the
ber of required moments reported for such transporf,,n \axwellian shape. The third and fourth cumulant are

58,50
models: , , related to the skewness and the kurtosis, respectively. For a
Other problems associated wif20) are that due to the isyrihytion function with unit variance the kurtosis is equal

polynomlal f(&) has several roots _and thus becomesf M€Y the fourth cumulant. Calculations simplify if central mo-
tive. However, as long as the resulting moments remain posis,ants are used.

tive, this has often been considered a cosmetic problem. In
the particular case dR1) we see, thatv; becomes negative
for B<2/3. Although such a small value ¢@f has not been s
observed in Monte Carlo simulations, they do occur in the W= FW;(35-2). (25
six moments model closed wif1), in particular during the
Newton procedure.

In the case of the six moments model we thus obtain for
the highest-order moment

The cumulant closure is a type of Maxwellian closure which

is distinguished from a theoretical point of view. Interest-

ingly, in the diffusion approximation the sixth moment cal-

culated with the cumulant methd@5) is equivalent to the

3. Generalized Maxwellian closure closure derived via Grad’s meth@al), which is not the case

. . for higher-order moments where additional nonlinear terms

In Ref. 28 we proposed to use a generalized Maxwellian 56 . -

closure appear. No_te that these plosures are a Imear combination of
the generalized Maxwellian closuré2?) with the values of

ws = 2uie, (22)  c¢=0 andc=1.

with ¢ an integer in the rangé-3]. Stable implementations
were only obtained foc=3, whereas values<2 show pro-
nounced oscillations in the numerical solution. However, the A comparison of the various closure relations is given in
results obtained front=2, though often unstable, appeared Fig. 1 usingw; andw, from Monte Carlo simulations. The
to better reproduce the Monte Carlo results. We now take 0P figure shows the silicon bulk result with a doping con-
somewhat different approach: by requiring consistency witieentration ofNp =10 cm™. The cumulant closure and the

bulk Monte Carlo simulations we obtainfrom a best match Grad expansion give reasonable results only for low bias
of ws to W¥C, which givesc=2.7. Note that Sonodet al?’  conditions. Good results are obtained for the empirical clo-
usedc=1. sure relation withc=2.7, which was found by a least square
fit over the energy region 0—1.5 eV. In the bottom figure the
results for a 100 nim*-n-n* structure are shown. A least
square fit again delivered a value closeto?.7. Best results
where obtained in the “channel” region, while clearly all

From a theoretical point of view probability distributions models become inaccurate inside the “drain” region. This is
are better described in terms of cumulants than in terms ofue to the complicated form of the distribution function
moment<£? In particular it can be shown that an exact de-which differs significantly from the bulk casé Further re-
scription of the displaced and heated Maxwellian distributionsearch on this topic might be in order.
function requires only the first three cumulants, with all other
cumulants being exactly equal to zero. The higher-order moB. The nonparabolic six moments model
ments, one the other hand, do not varfisfihis motivated us Ignoring the termsVH; as in Ref. 14 the fluxes can fi-
to apply the method of cumulants to the closure problem, -

. . . . - hally be written as

Using a cumulant expansion method for device simulation
was also suggested in Ref. 61. In Ref. 56 the cumulant _ 2uiHi
method was used for the solution of the Boltzmann equation nvi== 3q
in the context of gas dynamics. i .

In probability theory and statistics, the characteristic'V& now introduce the variable transformafion
funptiong is. defined via the Fourier transform of the distri- Wy =3keT, wo=2KET28, wy= %kgﬁy_ (27)
bution functiort®®*

5. Comparison of the closure relations

4. Cumulant closure

3+Z’Hi>. 26

(V(n\NHl) - nFWi 2H
i+1

The quantityy depends on the applied closure relation and
9(&r b :f f(p,r,Dexpli& - p)dp. (23) equals° for the generalized Maxwellian c!osure VG
-2) for the cumulant closure. We then obtain

Considering the Taylor expansion of(tp we gef* nVo = — Ay(V(nksT) = nFhy), (28)
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anT? T°B-T2
C, atB+ A -(nVZ)—ZF-nvlz—nQM‘,
72

(39

with C;=3kg/2 and02=15k§/4. The equilibrium valued,

and B¢y are calculated from the equilibrium solution of
Boltzmann’'s equation for the nondegenerate case which is
the Maxwell distribution. Note that only for parabolic bands
the familiar relationw;=3kgT, /2 is obtained. Due to the
nonparabolic band structure the equilibrium carrier tempera-
ture defined vig27) is different from the lattice temperature
and we haveTy,~309.452 K andfB.,~1 at T, =300 K.
These are also the values used for the Dirichlet boundary
conditions forT and .

IV. MODELING OF THE PHYSICAL PARAMETERS

In addition to the mobilitiesug, w1, and u,, the flux
equations(28)—(30) contain the nonparabolicity factokd;,
H,, andHj, while the balance equation83)—(35) contain
the relaxation times; and r,. These parameters are difficult
to model since they all depend on the actual shape of the
distribution function and on the band structure. They there-
fore contain information on hot-carrier and nonparabolicity
effects. In addition, the mobilities and relaxation times de-

FIG. 1. Comparison of the various closure relations calculated by a Montepend on the_' scattering r_ates- Slm_ple empmcal models as the
Carlo postprocessing step. The top figure shows the silicon bulk result for ®nes used in Ref. 28 did not deliver satisfactory results. In

doping concentration olp=10' cm™ while the bottom figure shows the
result for a 100 nn)m*-n-n* structure. The generalized Maxwellian closure

gives better results than the cumulant closure.
NV, = - Ay (V(nkET?B) — nFhykgT), (29)
NV, == AV (NIgT®y) — nFhakGT?B), (30

with the auxiliary quantities

i+1

miHivg 1 .
== 1+2), 31
A= 3E,( j) (31)
3 + 2iH;
= =1 32
' (3+2)Hiyy (32
Note that for parabolic bandg=1 holds.
The balance equations are obtained as
an
—+V (V) =0, (33
ot
anT T-T
017 +V -(nVy) -F-nVg=—-nC,—=, (34)
71

particular, a consistent comparison with Monte Carlo simu-
lations is difficult, because the resulting transport model does
not reproduce the Monte Carlo results in the homogeneous
case. It is therefore problematic to judge the validity of these
models in the inhomogeneous case. To avoid uncertainties
arising from this issue we extract all physical parameters as a
function of the doping concentration and the average energy
from homogeneous Monte Carlo simulations. The ratios of
the higher-order mobilitieg,; and u, to the carrier mobility

Mo, the relaxation times; and 7, and the nonparabolicity
factors H; are shown in Fig. 2 for silicon with a doping
concentration of 18 cm3.

All these transport parameters are then plugged into the
macroscopic transport models as a function of the average
energy. Since all model parameters are obtained from bulk
Monte Carlo simulations the transport models are free of
fit-parameters which leaves us with “no knobs to tuin.”
Having too many adjustable parameters is a particular incon-
venience inherent in many energy-transport models based on
analytical models for the mobilities and relaxation timaa
avoid fit-parameters is essential for higher-order models,
since the interplay between the various parameters is highly
complex and the numerical stability of the whole transport
model depends significantly on the choice of these param-
eters. In particular, the model based on the Monte Carlo data
outperforms its counterparts based on analytical mobility
model$® significantly, both in terms of numerical stability
and in the quantitative agreement of the simulation results
with Monte Carlo device simulations.
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105 = T T T T T gible (see the Appendix for details on some of the discreti-
] zation scheme@s|n particular for then*-n-n* structure stud-

ied in this article, the convergence behavior was found to be
excellent. For instance, the number of Newton iterations is

095}
g comparable to those required for the solution of the energy-
3 o9f transport models while the condition of the equation system
2 1 was found to be only slightly degraded. For the limited num-
E"-”" ber of devices considered so far we found that the six mo-
0.8'_ ments model converged at maximum bias with roughly the
I ] same number of iterations as the energy-transport models
0.15f ~-e 4 starting from the equilibrium initial guess. Differences in the
~— il Tl i ; i i
] overall simulation time are related to the increased system
e T SRR K S Y WA Yy matrix size and the slightly poorer condition of the equation
Average Energy |eV] system. A comparison of the required computation time for
035 the six moments model gave approximately a factor of 4
over the drift-diffusion model and a factor of 2 for the
energy-transport model. We consider this a reasonable price
03k for the improved accuracy to expect from the six moments

model. For the sake of completeness it is worth mentioning
that the simulations based on the macroscopic models took a
couple of seconds while the self-consistent Monte Carlo
simulations required several hours.

In a numerical implementation some caution is required
regarding the nonparabolicity factors. In equilibrium no cur-
rent is allowed to flow and all other fluxes must be zero as
well. As can be easily derived frorf28)—(30) this requires

Y B S S SR S : the conditions
0 01 .02 03 04 05 06 07

Average Energy [eV) H
1 T 7T "7 T H2: 1

Retaxation Time [ps]
5
L)

(=4
N
L]

(3+2Hy), H;= Hlﬂ(g +4H,) (36)

5:8eq 7'yeq
to be fulfilled in equilibrium. In this work these parameters
are extracted from Monte Carlo simulations. At low fields
they show large stochastic errors afg and H; calculated
from H'}"C using (36) differ from the Monte Carlo results by
roughly 1%. Unfortunately, the transport equations are very
sensitive to small changes in the nonparabolicity factors. For
instance, for the 50 nm device this discrepancy results in a
current flow of 20 nAfum and a temperature difference of
20 K inside the junction regions instead of the expected
equilibrium values. Thereforé], andH; are calculated from

095

Non-Parabolicity Factors

T 005 04 05 06 07 H, using (36) for carrier temperatures close to equilibrium,
Average Energy [eV) thereby enforcing the proper equilibrium response.

07—l

FIG. 2. Ratio of the higher-order mobilitigs, and u, to the carrier mobility
1o (top), the relaxation timesy; and 7, (middle); and the nonparabolicity

factorsH; (bottom) for a doping concentration of 3®cm 2. VI. EVALUATION AND DISCUSSION

To investigate the accuracy of the six moments model

V. NUMERICAL PROPERTIES we consider a series of one-dimension&n-n* structures.
These structures display similar features as contemporary
A Scharfetter—Gummel style discretizatidrwas ini- MOS and bipolar transistors like a pronounced velocity over-

tially used for the discretization of the parabolic six momentsshoot and a mixture of a hot and a cold distribution function
model proposed in Ref. 28. Several suggestions for the dign the “drain” region. With these structures it is possible to
cretization of energy-transport equations which generalizetudy the basic behavior of macroscopic transport models for
the Scharfetter—Gummel method can be found in literaturevery small devices without the additional levels of complex-
Methods of this kind which we studied recently are Mein-ity introduced by two-dimensional MOS devices. The doping
erzhagen’s modélt Forghieri's method® and variants concentrations were set tox510'° cm™ and 167 cm™ and
thereof'® All these methods can be unified in the frameworkthe channel-length was varied from 1000 nm down to 20 nm.
of an optimal artificial diffusion methott. In addition, a  Since the accuracy of the transport models was found to be
double grid variant was implementgﬁAll these variants bias-dependent, the bias-conditions were chosen in such a
were evaluate®® but the observed differences were negli-way that a maximum electric field of 300 kV/cm or
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600 kV/cm was maintained. In addition to the six moments L S
model we consider the corresponding energy-transport model
where the energy-flux relation is closed with a heated Max-
wellian distribution. That corresponds with settiggto its
equilibrium value in(29). By this measure the equation for
the kurtosis becomes decoupled from the other equations and
can be calculated in a postprocessing §fdpne might argue
that this closure relation is not that important and that for the
modeling of hot-carrier effects this decoupled equation sys-
tem gives a sufficiently accurate estimate grWe will see

in the sequel that this is not the case. For the sake of com-
pleteness, we will also show the results of the corresponding

Velocity [10° cm/s}

drift-diffusion model where the tabulated mobility is used as ¥ 0.3 0.4 0.5 6
a function of the local electric field. ke
A comparison of the average veloci¥fy and the kurto- 35 . . . .
sis B obtained from the macroscopic models with the Monte o mC L =100 nm
Carlo results is shown in Figs. 3 and 4 for three devices. The 3F 1

= SM
spurious velocity overshoot is significantly reduced in the six

moments model, consistent with previous restfitwhile the
kurtosis produced by the decoupled six mome(eisergy-
transport model is only a poor approximation to the Monte
Carlo results for shorter channel-lengths. An accurate kurto-
sis, however, is a prerequisite for the modeling of hot carrier
effects.

The strong influence of the closure relation on the result-
ing velocity profile and the kurtosis is depicted in Fig. 5.
Since convergence could not be obtained for the cumulant
and Grad closures for bias voltages larger than a few thermal
voltages only the generalized Maxwellian closug®) is

Velocity [10” cmis]

shown. It was found that when the value@épproached 2, A T
the convergence of the equation system was heavily affected aF | o MC c” " .
until convergence could not be obtained at all. The result sk :IS;: I/ 'u‘ |
shown in Fig. 5 forc=2 was obtained by gradually reducing _ . DD ;o
¢ starting fromc=2.7. Although convergence was reached 2T /) \ T
(quadratic behavior in the Newton methaghd the residua "5 25F R4 \ .
and updates where reduced to very small values, wiggles in ; oL ’,/ \ _
the solution can be observed. These wiggles disappear when g oo '.‘

3 usp .

|

c is increased. The optimum bulk valus=2.7, however,
delivered satisfactory results also in the inhomogeneous
case.

The errors in the simulated terminal currents of the mac-
roscopic transport models relative to the Monte Carlo simu- ) ;
lation are shown in Fig. 6 as a function of the channel-length. il
W_'th the Qccurrence of no.nlocal effects the accuracy of th%IG. 3. Comparison of the velocity profile delivered by the macroscopic
drift-diffusion model begins to gradually degrade for models with the Monte Carlo results. The six moments md8af), the
channel-lengths smaller than 250 nm. Interestingly, for eenergy-transport mod¢ET), and the drift-diffusion modelDD) are shown.
maximum bias of 300 kV/cm, a maximum error of 27% is
reached at 65 nm and for a further reduction of the channel-

length the error begins to gradually decrease. For a maxi-
mu?n bias of 600 kg\]//cm hgoweverythe maximum error is €Nergy-transport model shows an error of 10% at 65 nm and

31% and occurs at 36 nm and for a further reduction of the*> "M for 300 kv/cm and 600 kV/cm, respectively. For the
channel-length the error decreases only moderately. The re§lX moments model we found the 10% error boundary at
son for this peculiar behavior will be explained shortly. 42 nm and 30 nm, respectively, while the drift-diffusion
The higher-order transport models, on the other handnodel reaches the 10% mark at 200 nm. However, while the
show a different behavior: They remain accurate down to &rror in the drift-diffusion model shows a conservative be-
certain channel-length but continuously lose their accuracjpavior by staying within reasonable bounds, the error in
for further decreased channel-lengths. In general, howevehigher-order transport models deteriorates below a certain
contrary to the drift-diffusion model, the accuracy of the channel-length. In particular, for a maximum electric field of
higher-order moments increases for increasing bias. Th600 kV/cm, the energy-transport model delivers the same

]
4
L

e
in
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|
]
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0.5
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; L.=50nm i X X
o MC \ FIG. 5. Influence of the closure relation on the velocity and the kurtosis.
25k [= M ll i Clearly visible are the numerical instabilities arising frem?2.
== ET \
? accordance with the findings of Ref. 58. When the bias volt-

age is increased, however, the drift-diffusion model gradu-
ally begins to underestimate the terminal current since non-
local effects are not accounted for. In total, we have two
different counteractive effects and only for larger applied
bias we get the expected underestimation. As a consequence,
there is an intersection point where terminal currents calcu-
lated by the drift-diffusion model equal those of the Monte
Carlo model. This fact becomes more apparent when the
channel-length is reduced. In the intermediate bias range the
FIG. 4. Comparison of the kurtosis delivered by the macroscopic model@iccuracy of the currents is thus astonishingly good.
with the Monte Carlo results. 'I_'he_six moments mo¢eM), the energy- Such an intersection point seems to exist for higher-
transport mode(ET), and the drift-diffusion mode(DD) are shown. order models as well, as indicated in Fig. 7. where the ter-
minal current of the 30 nm device predicted by the six mo-
error as the drift-diffusion model at 41 nf81%) while the  ments model intersects the Monte Carlo curve for a
error curve of the six moments model intersects the curve ofmaximum electric field of approximately 900 kV/cm. An-
the drift-diffusion model at 24 nni29%). other indicator is the increased accuracy of the currents for
A common perception is that the drift-diffusion model higher bias as apparent in Fig. 6.
delivers smaller currents than the Monte Carlo model. This is
only partly correct. To unQerstand this peculiar be_hawor W&/ || CONCLUSIONS
have to look at the terminal currents as a function of the
terminal voltage as shown in Fig. 7. The bias-dependence of We have derived nonparabolic higher-order transport
the accuracy can be clearly seen. In particular, all macromodels for semiconductor device simulation. All physical
scopic transport models give too large currents close to equparameters are taken from bulk Monte Carlo simulations.
librium. This overestimation of the near-equilibrium conduc- The particular focus of this work is on the nonparabolic six
tance is largest for the drift-diffusion model, as can be seemoments model. In that context the closure of the highest-
in Fig. 8, and becomes more important for smaller devices irorder moment was identified as being critical for the numeri-
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h ' O MC LC=50nm
\ E,, - 600 kVicm o MC B |—— ™ o]
\ —sM - ET 270
L\ -=- ET| 20 bD Ko J
\ 3 -,
sess DD ’
5 ,/’ o | e
g 15 ’ S . E
,I
) ’
10 e -
/ E_, ~600kV/cm
7 0.
T A" B ~300kViem ’
b ] 1 P 1 i 1 A
0 05 i 13 2 25
Bias [V]
% 30 40 50 looLc [nmzloo 500 1000 FIG. 7. Comparison of the terminal currents delivered by the macroscopic

models for two short devices. As can be seen, the accuracy depends on the

FIG. 6. Comparison of the terminal currents delivered by the macroscopigIas condition.

models as a function of the channel-length. The bias voltage was adapted for

ﬁzg? Cdoen"s'f:n'tr.' such a way that the maximum electric field is approximatelyy i gt sion model. In particular, the calculated concentra-
tion, average energy, and average of the square of the energy,
show good agreement with the Monte Carlo result, which

cal stability and a model consistent with the homogenousllows accurate modeling of hot-carrier effects like impact

Monte Carlo data has been proposed. A comparison of th@nization and hot-carrier injection into the gate. This is not

terminal currents predicted by these models with the resultpossible to such a degree with the energy-transport model,

from self-consistent Monte Carlo simulations reveals someot to mention the drift-diffusion model.

interesting properties. First of all, the heated Maxwellian clo-

sure commonly used in energy-transport models has an im-

portant impact on the accuracy of the resulting transporbPPENDIX: DISCRETIZATION SCHEMES

model. In particular, the six moments model, which avoids

this closure relation, predicts more accurate terminal cur- Here some of the discretization schemes that have been

rents. For example, if a 10% error compared to the Monte&onsidered are briefly described. For example, we used a

Carlo result is defined as acceptable, the drift-diffusiongeneralization of the discretization proposed in Ref. 28

model reaches this error around a channel-length of approxhich is based on the general form of the flux relations

mately 200 nm, the energy-transport model at 55 nm, and

the six-moments model at 30 nm. Two findings regarding the

drift-diffusion model are of particular interest: first, the over-

estimated near-equilibrium conductance which is counterwith

acted by the missing velocity overshoot gives a smaller un-

v, = —Ai(wavvi) - Fhi(awi)%), (A1)

derestimation of the terminal currents as expected. Secondly, =N Wo=ksT, (A2)
this underestimation behaves quite conservatively, that is, it _ _
remains below 30% for typical bias conditions. The higher- G=nkel, Wi=keT4, (A3)
order moment models, on the other hand, behave differentl _ _

Y &=nkT8, W= keTyip. (A4)

because below a minimum channel-length the errors in-
crease. Above this critical channel-length which is some-Applying the standard assumption of Scharfetter—Gummel-
where around 25 nm for the six moments model, the sixype discretization schenféshat the projected fluxVv,/A,
moments model delivers considerably better results than thieetween two gridpointsn andl is constant and that the en-
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Aol & &
nvM=-— »<—'BY- ——'B—Y-), A8
"= M B0 B (A8)
SohiA + 2AW,
Yi=- sy - 22W (A9)
Wi
However, the differences in the results when ugiAf) and
(A8) were found to be marginal for the devices considered.
A somewhat different variant which included théH,
term was also considered. The flux equations are then of the
form
0 [ L L 1 "
0 001 002 003 004 005 1
Bias (V] nv; = Bi<V(§iWi) - F(%iWi)W> , (A10)
i
25 T T T T
o MC Lc=50nm ,l, ) with Bi:Ai/Hi+l and
/
7] :'hrd ,/, "‘."'.‘ - go =n, WO = kBTHl, (All)
- 4
«--- DD ,’._." 9]
= 1s ,/./'." ] gl = nkBTthz, Wl = kBT:B/hli (AlZ)
§. i R ) o
o
) ' &=NIGT?BhH;,  Wo=kTy/(Bhy). (A13)
N S e .
..;/ o For the discretization we obtain with the assumption
g nV,/B;~const
osb o/ o J _
B B ~
VM = = WI(EB(Y) = 7= V), (AL4)
B Y R Y 506 063
Bias [V]

__SCAY+ AW,
FIG. 8. Near-equilibrium small signal response of the macroscopic models Yi=- ~ : (A15)
compared to the Monte Carlo results. All macroscopic models overestimate W

the near-equilibrium conductivity but the inclusion of additional moments . L .

improves the result. Note how this effect becomes stronger for decreasing N€ .dlscretlzatlon fonV;/(B;W) = CODSt can be obtained ac-
channel-length. cordingly. Although more accurate in theory, as the averag-
ing of the nonparabolicity factors is avoided, neither of these
variants gave as good results as the variants based on the

ergy associated to each fli, varies linearly on the edge
9y ' y g neglectedVH; terms.
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