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Abstract—The quality of the numeric approximation of the
partial differential equations governing carrier transport in semi-
conductor devices depends particularly on the grid. The method
of choice is to use structurally aligned grids since the regions
and directions therein that determine device behavior are usually
straightforward to find as they depend on the distribution of dop-
ing. Here, the authors present an algorithm for generating struc-
turally aligned grids including anisotropy with resolutions varying
over several orders of magnitude. The algorithm is based on a
level set approach and permits to define the refined resolutions in
a flexible manner as a function of doping. Furthermore, criteria
on grid quality can be enforced. In order to show the practicability
of this method, the authors study the examples of a trench gate
metal–oxide–semiconductor field-effect transistor (TMOSFET)
and a radio frequency silicon-on-insulator lateral double diffused
metal–oxide–semiconductor (RF SOI LDMOS) power device
using the device simulator MINIMOS NT, where simulations are
performed on a grid generated by the new algorithm. In order to
resolve the interesting regions of the TMOSFET and the RF SOI
LDMOS power device accurately, several regions of refinement
were defined where the grid was grown with varying resolutions.

Index Terms—Grid generation, level set method, semiconductor
device simulation, structurally aligned grids.

I. INTRODUCTION

THE QUALITY of the numeric approximation of the solu-
tion of semiconductor device equations by the finite-

element or the finite-volume method is governed by the quality
of the underlying mesh, and thus structurally aligned grids are
a crucial premise for accurate device simulation. In addition to
aligning the meshes within the structures, it is also desirable
to enforce quality criteria like the Delaunay criterion or the
minimum angle criterion [1].

In this paper, a new method for generating structurally
aligned triangulations, including anisotropy if desired, is
presented. The main idea is to first construct a suitable uncon-
nected set of edges by advancing a front through the simula-
tion domain using a level set algorithm. After extracting and
reworking the boundaries, these edges are used in the second
step as the input to a specialized grid generator that enforces
the quality criteria. Although a technique based on the level
set method has been used for generating structurally aligned
grids [2], that method cannot generate anisotropic grids and
no condition concerning the quality of the grid, e.g., minimum
angles or the Delaunay criterion, can be guaranteed. However,
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the approach outlined above has been successfully applied to
semiconductor device simulation using the generated grids and
the simulator MINIMOS NT [3].

The partial differential equations that have to be solved in
order to simulate charge transport in semiconductor devices are
discussed in Section II and will be used for the presented exam-
ples. If the dependence of the solution on the doping and the op-
erating conditions can be estimated in advance, the grid can be
suitably constructed before attempting the numerical solution.

After the description of the grid generation algorithm in
Section III, it is applied to two examples—which are interesting
by themselves—in order to show that the method is applicable
to real world tasks.

The first example, in Section IV, is a trench gate metal–
oxide–semiconductor field-effect transistor (TMOSFET).
TMOSFETs are useful for power switching at high voltages
[4]–[8]. They also provide advantages because of their geo-
metric layout, i.e., because their inversion and accumulation
channel regions are perpendicular to the wafer surface. Hence,
they enable to maximize the ratio of cell perimeter to area and
thus to increase packing density. The TMOSFET considered
is a 120-V trench gate U-shaped MOS (UMOS) transistor
(cf. Fig. 2). After generating the structurally aligned grid, the
authors present the simulated characteristics.

The second example, in Section V, is the simulation of a
radio frequency silicon-on-insulator lateral double diffused
metal–oxide–semiconductor (RF SOI LDMOS) power transis-
tor. Here, several areas of refinement were chosen and the
grid was generated to take the specific structure of the device
and location of the junctions into account. SOI is a promising
technology for the monolithic integration of digital, analog,
and RF devices. The reduced capacitance and the low leakage
current of SOI devices are highly desirable characteristics for
RF power applications. Here, the two-dimensional (2-D) device
simulation of a 110-V RF SOI lateral double diffused MOSFET
(LDMOSFET) is presented.

II. SEMICONDUCTOR EQUATIONS

The basic semiconductor equations [9]–[11] are the Poisson
equation and the continuity equations for electrons and
holes, i.e.,

∇(ε∇ψ) = q(n− p− C)
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The unknown quantities are the electrostatic potential ψ and the
electron and hole concentrations n and p.C denotes the net con-
centration of the ionized dopants, ε is the dielectric permittivity
of the semiconductor, and R is the net recombination rate.

The default carrier transport model in MINIMOS NT [3] is
the drift diffusion model that will be used in the following.
However, all the considerations are also valid for the hydro-
dynamic model. The drift diffusion current relations can be de-
rived from the Boltzmann equation by the method of moments.
The electron and hole current densities are given by

Jn = qµnn
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These current relations account for position-dependent band
edge energies, EC and EV , and position-dependent effective
masses, which are included in the effective density of states,
NC,0 andNV,0. The index 0 means thatNC,0 andNV,0 are eval-
uated at an arbitrary and constant reference temperature.

Some of the main difficulties in the numerical treatment of
these equations are the very large differences in the magnitudes
of the involved variables. Because of these differences, the drift
diffusion equations show an almost singular type of behavior
and can be treated well by singular perturbation analysis [10].
It is known that the solutions of the drift diffusion equations
exhibit an extreme layer structure, i.e., they show locally large
gradients [12]. The steep gradients occur locally across p–n
junctions and in channel regions, e.g., in the narrow regions
underneath semiconductor–oxide interfaces. If a numerical
method is adapted to this layer behavior, its performance can
be drastically improved [10, Ch. 3].

This information about the layer structure of the solutions
is vital when generating grids from a priori information. In
contrast, grid refinement techniques are of course based on
a posteriori information from error estimators. The solutions
of the device equations depend on the location of the junctions,
the iso-lines and the distribution of the doping, and the operat-
ing conditions. Because of the layer behavior in the vicinity
of junctions, the grid can be suitably constructed for certain
operating conditions based on the extracted iso-lines before
attempting the numerical solution.

This procedure will be described in the next section. The
solutions of the hydrodynamic model are similar to those of
the drift diffusion equations concerning the previous argument,
although additional refinement may be beneficial to accurately
model carrier temperatures. Thus, the demands on grid genera-
tion are similar when solving the hydrodynamic semiconductor
equations.

III. GRID GENERATION METHOD

In this section, the details of the algorithm devised for gener-
ating structurally aligned grids are presented after an overview
of the level set method in two spatial dimensions [13]–[16].

In recent years, the level set method has received lots of at-
tention as a means for tracking moving boundaries in areas like
semiconductor process simulation, fluid dynamics, computa-
tional geometry, image enhancement and noise removal, shape
detection and recognition, and electromigration. The main ad-
vantages of the level set method are the fine resolution that can
be achieved, which is much finer than the resolution of the grid
on which the level set equation is solved, and the precise and
straightforward calculation of surface normals. Furthermore,
joining surfaces are handled implicitly by the algorithm.

The idea behind all level set algorithms is to represent the
curve or surface in question at a certain time t as the zero level
set (with respect to the space variables) of a certain function
u(t,x), the so-called level set function. Thus, the initial surface
is the set {x|u(0,x) = 0}. The speed of a point on the surface
normal to the surface is called the speed function F (t,x). For
points on the zero level set, it is usually determined by physical
models.

The surface at a later time t1 is also the zero level set of the
function u(t,x), namely {x ∈ R

n|u(t1,x) = 0}. This leads to
the level set equation

ut + F (t,x)‖∇xu‖ = 0

u(0,x) =u0(x) given

in the unknown variable u, where u(0,x) determines the initial
surface. Having solved this equation, the zero level set of the
solution is the sought curve or surface at all later times. This
equation relates the time change to the gradient via the speed
function.

In the first step, the level set function must be initialized
to the signed distance function. Since the level set algorithm
will later work only in a narrow band around the current zero
level set, it is sufficient to perform the distance calculations
near the initial boundary. This can be achieved, e.g., by a
recursive algorithm walking along the boundary.

In the numeric application, the level set function is repre-
sented by values on grid points. In order to find the coordinates
of the current boundary, the surface must be extracted from this
grid using linear interpolation.

A second-order space convex finite-difference scheme
[17]–[20] was used in this paper to solve the level set equation.
The spatial and temporal discretization steps ∆x, ∆y, ∆z,
and ∆t are connected via a Courant–Friedrichs–Levy (CFL)
condition that demands that the front must not cross more than
one grid cell in each time step and ensures the stability of the
scheme. The CFL condition is an information theoretic one and
is fundamental in the sense that it is not affected by the choice
of the numeric method, be it finite differences or finite elements,
etc. The CFL condition requires that

∆t max
domain(F )

F ≤ min(∆x,∆y,∆z).

Advanced topics are narrow banding and extending the speed
function from values at the boundary to the whole narrow band.
The combination of these two concepts was described in [21].
The benefit of this algorithm is that it renders reinitialization
superfluous. Frequent reinitialization that would be necessary
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otherwise is generally considered critical since it introduces
inaccuracies [22].

For generating grids, the underlying idea is to advance one
or more fronts through the simulation domain using a level set
algorithm and constant speed functions. For each moving front,
a certain number of boundaries are extracted and reworked.
The number of these front boundaries and the spacing between
them can be arbitrarily defined and depend on the number of
advancing level set steps and their time steps. Clearly, the
spacing between the intermediate boundaries obtained by the
level set algorithm will later determine the diameters of the tri-
angles of the final grid.

Since the boundary segments of the intermediate boundaries
obtained after surface extraction from the rectangular grid may
be arbitrarily small, the boundary segments must be normal-
ized. The segments are normalized by choosing points on the
boundary that are equidistant when their distance is measured
along the boundary. The normalized intermediate boundaries
consist of straight lines that are the edges of the final grid to
be respected in the second part of the algorithm. This first part
of the grid generation is highly customizable and anisotropy
can be introduced here by choosing the spacing between the
intermediate boundaries and the distance between points of the
normalized boundary accordingly.

For semiconductor device simulation, the direction of align-
ment is generally chosen along junctions. The distance between
the parallel front boundaries is approximately proportional to
the logarithm of the amount of doping, and if the doping
is below a limit no special edges are prescribed.

In the second part of the algorithm, the set of edges con-
structed in the first part serves as input to the actual grid gen-
erator. The TRIANGLE program [23], [24] was used in this
paper. It is written in C and computes 2-D Delaunay trian-
gulations exactly. The minimum angle criterion is obeyed
using a refinement algorithm for quality mesh generation [25]
that allows to produce meshes with no small angles while using
relatively few triangles. The mesh density can be increased
if desired. After reworking the edges into the appropriate
input format and running TRIANGLE, the output is trans-
lated into program information file (PIF) files [3] suitable for
MINIMOS NT.

The benefits of this algorithm can be summarized as follows.
The grid resolution is customizable and the areas of higher res-
olution can be chosen arbitrarily. The grid resolution may vary
over several orders of magnitude. The algorithm can deal with
arbitrary initial structures and an arbitrary number of starting
fronts defining areas of high resolution. Anisotropy may be in-
troduced by choosing appropriate parameters for the algorithm.
At the same time, quality criteria like the Delaunay criterion
and requiring that all angles of the triangulation are larger than
a certain minimum angle are enforced. It is important to note
that the algorithm works reliably since it is based on edges in
contrast to just prescribing sets of points, and hence directional
information is preserved.

In [26], a different approach to grid generation using a level
set algorithm was presented. Previous work along these lines
includes [27] and [28]. Compared to grid generation algorithms
using iso-lines or iso-surfaces of solutions of a Poisson equation

Fig. 1. Two main steps of the grid generation method: building parallel
boundaries and finding a Delaunay triangulation.

[29], the advantage of this algorithm is its flexibility. This is
important, e.g., near the buried layers of silicon-on-insulator
(SOI) devices. The initial boundaries where the advancing
fronts start and the prescribed number of intermediate bound-
aries and their spacing determine the properties of the final grid
in a straightforward manner in contrast to the Poisson equation
approach.

Fig. 1 depicts an example. The first image shows the bound-
aries obtained by moving the bottom line using the level set
algorithm and normalizing the length of the individual seg-
ments. The second image shows the final grid respecting the
prescribed segments. Anisotropy is introduced by varying the
distance between the boundaries. In the next section, two real
world device simulation examples will be investigated.

IV. GRID GENERATION FOR A TMOSFET

The device structure of the trench gate UMOS transistor is
shown in Fig. 2 and its parameters in Table I. Its trench depth
is 3 µm and its gate oxide thickness is 0.1 µm. It is designed to
achieve a forward blocking voltage of 120 V.

A. Grid Generation

For grid generation, the authors used four boundaries fol-
lowing the three junctions (cf. Fig. 2) and one in the p region
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Fig. 2. Structure of the TMOSFET. The half cell pitch of the device is 2.5 µm
and its n drift length is about 9.5 µm.

TABLE I
TECHNOLOGICAL AND GEOMETRICAL PARAMETERS

CONSIDERED OF THE TMOSFET

near the gate oxide. First, at the n+–p junction, the authors
used three boundaries in each direction of the initial boundary
following the junction with a distance of 0.02 µm between any
two adjacent boundaries.

At the p–n junction, the authors used one boundary above
and below the initial boundary and a distance of 0.02 µm. At
the n–n+ junction in the lower part of the device, the authors
constructed two boundaries with a distance of 0.5 µm going
downwards from the initial boundary following the junction.
For the last prescribed edges, the authors started at the right
hand side of the p region and moved to the left constructing
three boundaries at a distance of 0.005 µm.

In the second step, the authors used the TRIANGLE program
requiring a minimum angle of 25◦ with these prescribed edges
as input. The grid produced two enlargements that are shown
in Figs. 3 and 4. The junction areas are resolved very finely as
demanded.

B. Device Simulation

The device simulations were performed using MINIMOS NT
[3]. Fig. 5 shows typical on-state characteristics of the high volt-

Fig. 3. Grid generated for the device in Fig. 2. Two enlargements are shown
on the right hand side.

Fig. 4. Enlargement of the grid shown in Fig. 3.

age TMOSFET. The I–V curves of the figure show that
good saturation current behavior is obtained by increasing the
drain voltage. Transfer characteristics are shown in Fig. 6 for
drain voltages of Vd = 0.1 V and 0.5 V. From this figure, a
threshold voltage VT of 2.5 V is obtained. It is important to note
that the threshold voltage is independent of the drain voltage.
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Fig. 5. On-state characteristics of the vertical TMOSFET for gate voltages of
5, 7, and 10 V.

Fig. 6. Transfer characteristics of the high voltage TMOSFET for drain
voltages of 0.1 and 0.5 V.

V. GRID GENERATION FOR AN SOI POWER DEVICE

The device structure of the RF SOI LDMOS power transistor
is shown in Fig. 7 and its parameters in Table II. It is designed
to achieve a forward blocking voltage of 110 V with an SOI
thickness tsoi of 1.5 µm and with a buried oxide thickness tox of
1.0 µm. The doping of the device is given by analytic functions
or, more precisely, Gaussian profiles (cf. Table II).

A. The Grid Generation

For the grid generation, the authors used six boundaries
following four junctions (cf. Fig. 7), one in the channel and
one at the silicon–insulator interface. First, at the p–body–n+
junction, the authors used one boundary in each direction of

Fig. 7. Structure of the RF SOI LDMOS power transistor and the gen-
erated grid.

TABLE II
TECHNOLOGICAL AND GEOMETRICAL PARAMETERS OF THE

RF SOI LDMOS POWER TRANSISTOR. THE LATERAL

FACTOR OF ALL GAUSSIAN PROFILES IS 0.8

the initial boundary following the junction with a distance of
0.1 µm between any two adjacent boundaries.

Second, at the n–drift–p–epi junction, the authors used one
boundary above and below the initial boundary and a distance
of 0.02 µm. Third, at the n–buff–p–epi junction, the authors
constructed one boundary above and below a distance of
0.02 µm. For the last junction boundary, the n+–n–buff bound-
aries, again one boundary above and below at a distance of
0.1 µm, were used.

In the channel region, the authors started at the interface
and moved down constructing four boundaries at a distance of
0.005 µm. For the last prescribed edges, the authors started at
the boundary between the silicon and the silicon dioxide layers
and moved up and down at a distance of 0.1 µm.

Again, the final grid was obtained by TRIANGLE starting
from these prescribed edges. The minimum required angle
was 20◦. The final grid is shown in Fig. 7 and an enlargement
in Fig. 8.

B. Results and Discussion of Device Simulation

The optimum drift length and the doping concentration are
considered by the reduced surface field (RESURF) principle.
With the proposed grid generation algorithm, mesh structures
suitable for device simulation can be obtained along the junc-
tions (parallel to the junction) and at the buried oxide interface.
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Fig. 8. Enlargement of the drain region (left) from Fig. 7.

Fig. 9. On-state characteristics of the RF SOI LDMOS power transistor for
gate voltages of 5, 10, and 15 V.

Again, the typical on-state characteristics were obtained using
MINIMOS NT and are shown in Fig. 9. The I–V curves imply
that good saturation current behavior is obtained by increasing
the drain voltage. Transfer characteristics are shown in Fig. 10
for drain voltages of Vd = 0.1 V and 0.5 V. From this figure, a
threshold voltage VT of 1 V is obtained.

To validate these simulation results, they were compared
to those obtained by Dessis using a very fine grid. Matching
results were found and the same saturation behavior was
obtained.

VI. CONCLUSION

A new method for generating structurally aligned grids and
guaranteeing quality criteria on the triangulation was presented.
It provides lots of flexibility, since the resolution and aniso-
tropy of the grid are customizable and the diameter of the
triangles may vary over several orders of magnitude within one
simulation domain. Compared to the approach of using iso-

Fig. 10. Transfer characteristics of the RF SOI LDMOS power transistor for
drain voltages of 0.1 and 0.5 V.

lines or iso-surfaces of solutions of a Poisson equation [29],
this method allows to propagate several fronts through the sim-
ulation domain and thus to tailor the areas of high resolution
precisely and in a straightforward manner.

Hence, it is well suited for semiconductor device simulation
and especially, e.g., for the simulation of SOI devices, where
high resolution is required in the vicinity of the buried layer.

Furthermore, the algorithm is robust since the generation
of the final triangulation is based on edges that have to be
respected (and not on single points). Finally, the grids gener-
ated satisfy the Delaunay criterion and the minimum angle
criterion that ensures high grid quality with respect to numeric
properties.

In two examples, the constructed meshes were used to obtain
on-state and transfer characteristics. The grids generated for the
nontrivial geometries of these devices increased the speed and
accuracy of the simulations.
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