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1. — Introduction

Carrier transport in conventional microelectronic devices is governed by the Boltz-
mann equation (BE). The equation provides a physical picture where carriers are point-
like particles (with well-defined position and momentum which compose the phase space)
subject to drift and scattering events. During the drift process carriers are accelerated
by the device electric field over classical Newton’s trajectories. The interaction with the
lattice imperfections, such as phonons, gives rise to scattering events which are local in
time and space. This means that the interaction is instantaneous and causes a change of
the carrier momentum but not of the carrier position. Averaged physical quantities such
as mean free path or time between the collisions characterize the transport conditions.
The channel of a conventional MOSFET is many mean free paths long. As the field is
moderate and changes smoothly, the scattering with phonons maintains the carriers in
a local balance with the lattice. The channel of a modern submicron device is only few
mean free paths long. The field is strong and exhibits strong changes with the distance.
Carriers are no more in a local balance with the lattice. Single carriers may cross the
channel without any interaction with phonons. This transport regime is nearly ballistic.

The classical picture fails when the scales of position and momentum or energy and
time become such that the Heisenberg uncertainty principle must be taken into account.
These scales can be evaluated by the following considerations:

(1) AE-6t2h — hAkAz > h,

where k is the wave vector.
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The position-momentum uncertainty is usually associated with the picture (>.f" a moving
wave packet. The packet must be well localized in the Brillouin zone, where & is change 1.
by the electric field: Ak must be smaller than the dimension of the Brillouin zone  of
t}ule order of the reciprocal lattice constant. Then the real space dimension of the wave
packet extends above the lattice constant. As the external field must remain constant
within the extension of the wave packet (see the discussion after eq. (24)), the Boltzmann
picture assumes potentials which are slowly varying over the lattice. This condition is
not satisfied around the energy band offsets in nanostructures.

The energy variation can be estimated using as a reference the mean thermal energy,
AE = kT (so that Ak = (2mkT)/?/h).

_ The evolution time of a Boltzmann system must be much longer than the time between
the collisions. The latter, in its turn, must be longer than 0t > kT /h ~ 0.1 picoseconds
in order to allow the build-up of the classical, energy-conserving delta-function. Other-
wise collisional broadening occurs, which will be discussed in the section devoted to the
Levinson equation.

~ The minimum distance Az > i/(2mkT)Y/? = Ag, where Ag is called the thermal de
Broglie wavelength, is estimated to be Ag > 10nm for most common semiconductors.
The dimensions of the Boltzmann system must be much longer than the mean free path,
which must be longer than Ag.

These conditions are not satisfied in the active regions of nanoclectronic devices or
during the evolution of systems considered by the modern femtosecond spectroscopy. In
such cases the classical transport picture must be abandoned and a quantum description
is necessary.

It is reasonable to assume that the carrier transport in the short active regions of na-
noelectronic devices is quantum-ballistic. Nevertheless phonon interaction can strongly
affect the neighboring regions and thus the device operation. Three types of such nanos-
tructures are considered below.

Figure 1 shows the typical geometry of a FInFET. According to the industry trends,
Intel and AMD will begin to utilize this structure in three years, as it offers supoevior
control of short-channel effects. The source (S) carriers are guided through the (hin
fin to the drain (D) region. The gate potential controls the current fow by opening
or closing the inversion channel in the fin. It is the active region of the device which
requires quantum treatment. The S/D regions cannot be interpreted as two roservoirs
of equilibrium particles: It has been observed that the output characteristics of the
device significantly depend on the S/D contact schemes [1] which demonstrate resistance,
These regions, large enough to allow classical treatment of the carrier transport, must
be included in the considerations. Thus a coupling between the transport pictures in
classical and quantum regions is necessary [2].

The resonant-tunneling diode (RTD) is a manifestly quantum device, whose operation
is based on tunneling. The energy band diagram, fig. 2, shows the active region compris-
ing the quantum well and the two barriers. The electric field in the region is approximated
by a constant. The device operates at far-from-equilibrium conditions provided by a hias
applied between the emitter (left) and collector (right) electrodes. The bias confrols the
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Fig. 1. The FinFET structure. Typical dimensions for the fin are 10 nm width, 50 nm height
and 40 nm length. The width and length of the S/D regions can be several tens of nanometers.

exchange of the particles which Qow between the electrodes through the allowed (reso-
nant) energy state formed in the well. The peak of the current oceurs when the state lines
up with the band minimwn in the emitter (chosen in fig. 2 to be the reference energy).
After this point the current drops with the increase of the bias, which forms a negative
differential resistance region in the current voltage (I-V) characteristics of the device.

Swrprisingly, ballistic quantum theories fail to model the device. Non-self-consistent
models, where the electric field is frozen, show a significat difference in the I-V char-
acteristics with and without dissipation by phonons [3]. Phonon scattering leads to an
increase in the valley current and a resonance voltage shift. The effect is due to a re-
population of the electron states in the emitter. Inelastic scattering events dissipate the
energy of the clectrons entering from the left-hand electrode. Propagating electrons fall
in the lower encrgy states in the noteh just before the left barrier, fig. 2, and contribute
to the current.

A self-consistent model has heen investigated by Frensley [4] for a single-barrier de-
vice. The Schridinger and Poisson equations have been iteratively solved at consecutive
steps. The obtained self-consistent solution gives rise to a rather unphysical potential.
The energy barrier lies near the hottomn of a parabolic potential well spread across the
sitdation dowain, This is due to a lack of accumulation of electrons in the emitter side
of the barrier, correspouding to the noteh in fig. 2. The main reason is that the notch
states are formed by the states incidenting from the collector side, as indicated by the
arrow in fig. 2. The correct acemmulation is obtained only by taking into account the
interaction with phonons, which links the emitter states with the states in the notch.

As a third device we consider a nanosensor for single-photon counting at microwave
froquencies around 500 GHz. This far-infrared range (FIR) of 10 p-1mm photon wave-
lengths is very interesting for spectroscopic research, since it containg the quantiumn energy
levels of semiconductor nanostructures, rotational spectra of molecules and vibrational
spectra of solids. Individual counting of photons in this range is very difficult since the
typical photon cnergies are as small as millielectronvolts. To compare, the visible and
near-infrared phonon energies are three orders of magnitude higher and can be sensed
by photomultipliers.
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Fig. 2. — Central part of the energy band diagram of an RTD. The height of the barriers is
0.3 eV, their width is 3nm, and the well width is 5nm. A linear voltage drop is assumed over a
distance of 40 nm.

The extreme sensitivity of single-electron transistors (SET) to charge has recently
been utilized for developing sensors for single FIR photons. The latter are converted
to a charge through an appropriate excitation mechanism. If cyclotron resonance is
adopted as such mechanism, strong magnetic fields are needed. An alternative mechanism
without magnetic field is utilized by the SET based on a double quantum dot system as
represented in fig. 3. The plunger gate G and the pair gate 2 control the energy levels 114
and pp in the two quantum dots A and B. The latter are separated by a potential barrier
controlled by the pair gate 1. The purpose is to allow tunneling of the electrons excited in
dot B to the open dot A. The pair gate 3 is strongly biased so that the tunneling between
B and the left-hand side reservoir is suppressed. The wings of the pair gate 2 serve as
a dipole antenna which converts the photons into charge energy in B. Finite current is
transmitted between S and D regions when the Fermi energy Er in the leads lines up
with p4. Hence, if 4 is changed with the bias of G, the conductance shows oscillations
each time when Er = p4. The oscillation period is proportional to the distance between
the carrier energy eigenvalues in A. The number of electrons in B affects the oscillation
period due to the electrostatic coupling between the two quantum dots. An absorbed
photon gives rise to an excited electron in B, which will tunnel to A and furthermore
to the leads. There the dissipative electron-phonon interaction cools down the excited
electron. The resulting ionization of B affects the oscillation period of the conductance.
The detection of individual events is possible because the lifetime of the photoexcited
positive charge in B is made sufficiently long. At low temperatures the probability (per
unit time) for an electron to absorb energy from the lattice is negligible. Then the lifetime
depends inversely on the probability of a cold electron to tunnel back in B.

These examples show that carrier-phonon interaction may play a crucial role for the
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Fig. 3. — Single-photon sensor based on high-mobility GaAs/Al,Gai-,As heterostructure. The
two quantum dots A and B are formed at T = 4.2 K by the negatively biased gate G and pair
gates 1, 2 and 3.

operation of some nanoelectronic devices. Along with the active regions of these devices,
the description of the carrier transport must also include regions of classical transport.
Different quantum approaches can be chosen for the active region. At the interface with
the classical regions the quantities inherent for the chosen approach must be coupled with
the Boltzmann distribution function or its moments. We will see that a very convenient
approach is provided by the Wigner formulation of quantum mechanics. It retaing many
of the concepts and notions of the classical transport such as phase space and distribu-
tion function. Furthermore phonon interaction can be accounted for within a hierarchy
of models, which range between first-principle quantum description and Boltzmann scat-
tering. We will first introduce the single-electron Wigner function.

2. — Classical and quantum distribution functions

2'1. Classical statistical mechanics. — We recall some concepts and notions of the
statistical mechanics, We consider a single particle in a potential field. The single-particle
phase space is defined by the Cartesian product of the position r and momentum p.
Physical quantities are functions A(r, p) defined in the phase space. The state of a single
particle is presented by a point in the phase space. A statistical description is introduced
if the coordinates of the point cannot be specified exactly, but with some probability.
Alternatively we may consider a system of equivalent particles, which are sufficiently
many to allow statistical description. The particles are considered non-interacting, but
may interact with the environment.

According to the basic postulate of the classical statistical mechanics, the state of
any particle system is completely specified by a [unction f(r,p,?), called distribution
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function with the following properties:

2) fep )20, [drdpfepy) =1,

so that the mean value (A) of any physical quantity is given by

(3) (“)(t) = [ drdpA(e,p)/(r,p.1)

The evolution equation for f is given by

(4) (% + 2. 58; +F(r)5%> f(r,p,t) = (%) .

Here m is the particle mass and the force F = —~VV is given by the gradient of the

potential energy V. The characteristics of the differential operator in the brackets, called
Liouville operator, are classical Newton's trajectories. Owver such trajectories the left-
hand side of (4) becomes a total time derivative. In the case of no interaction with
the environment, (8f/dt). = 0 trajectories carry a constant value of f. Otherwise the
particles are redistributed between the trajectories and the right-hand side of (4) equals
the net change of the particle density due to collisions. In the rest of this section we
derive a quantum analog of egs. (2), (3) and the Boltzmann equation (4).

2°2. The Weyl transform. — Physical quantities in quantum mechanics are presented
by Hermitian operators A:

(5) Algn) = an|bn), (Dn|¢m) = Omn , Z |6n) (¢n] = 1.

n

Such operators have real eigenvalues and a complete system of orthonormal eigenvectors
which form an abstract Hilbert space. If the spectrum is continuous the sum transforms
into integral and the Kronecker delta becomes a delta-function. We assume that the
reader is familiar with the Dirac notations. A state |¥;) of the system now is an element
of the Hilbert space (quantum counterpart of the classical phase space point). In wave
mechanics it is postulated that the state |¥;) is a solution of the Schrédinger equation

. )
(6) W) = in==t

. (W] Wy) =1,

where H is the operator of the energy. It can be shown that during the evolution the
state remains normalized, which is often called conservation of probability.

How to define the operator A associated to given physical quantity? According to
the correspondence principle, to the classical position and momentum correspond the
Hermitian operators # and p, which, moreover, obey the following commutation relation:

(7) r—*% p—p, p-pr=I[fpl_ =ik
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With the help of (7) and the knowledge of A(r, p), we can try to obtain A explicitly. For
example, we can use the Taylor expansion to establish the rule

Alr,p) = Zb”rp3~—>A Zbur

2

For the Hamiltonian of a particle in a potential field H(r,p) = (p?/2m) + V(r) this
gives the correct result, see (11). However, for general functions A the procedure is
not straightforward, since the operators p and ¢ do not commute. First, non-Hermitian
operators can appear. Second, even for Hermitian operators there is ambiguity in the
correspondence. Consider two equivalent expressions for the function A(z, py):

1 ‘
A = pea®pe = Ay = 5 (032° +27p}).
A replacement with & and p, gives rise to the following operators:

Ay — Ay = pod?p,, Ay — Ay = (p22% + 2%52)

(pai® + &°p2).

l\DI»—A

Now, while A; = A, the obtained operators differ by A% 4, = Az + K2 Thus (7) is
not sufficient to establish a unique correspondence between A and A. The ambiguity is
avoided by establishing a special rule of correspondence, which is postulated:

~

) A= d(i5) = [ dsdap(s, q)eierran.
Equation (8) is called Weyl transform. Here /3 is adjoint to A via the Fourier transform:

9)  A(r,p) = /ds dgp(s, q)elrstPa), B(r,p) = —?1_)5 /drdPA(rvp)e_i(erO‘).

(27

2'3. The density matriz. —~ The uncertainty principle imposes a low limit in precision
for the joint knowledge of r, p. Wave mechanics uses only half of the phase space
—-coordinate or momentum representation— for the description of the physical system.
We assume a coordinate representation, where

' - 1é,

(10) plr) =r|r), / drjr)(r] = 1, p=—-ih—.
Or

By denoting ¥,(r) = (r|¥,), the Schréodinger equation for a particle in a potential V reads

(11) <r|I:IL\I/t> = (‘2%%5 + V(r)) U (r) =ih

é)\Il.t (I‘)
ot
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The average value of a physical quantity A in state |¥;) is expressed by

12) W) = (ANw) = [ dr(ulr(slAe,).

This formalism is too far away from the familiar classical concepts. Nevertheless, it is
possible to reformulate the ideas of quantum mechanics in phase space. The first step is
to double the variables in the representation. For this we recall how A operates on |¥,).
With the help of (5) and (10) we obtain the following integral:

<r[fi|\IJt> :/dr’z an (2] p) (bt )(x'|T,) = /dr’a(r,r’)\llt(r’).

A replacement in (12) shows that the physical average (A)(t) is actually evaluated in a
“double half” of the phase space:

(A)(t) :/dr'/dr\llz‘(r)oz(r, )W, (r').
This implies to investigate the quantity
pi(r,x") = Wr(r) Uy (r) = (0| W) (Tefr’) = {r|pe]r'),

called density matrix. It is straightforward to see that the corresponding density operator
p¢ is Hermitian. (A)(¢) can be expressed as

(13) (A)(t) = /drdr'pt(r, ra(r',r) = /dr/ dr'{r|p|r’ ) (x'|Ar) =

- / dr(x|p Alr) = Tr (. A).
Using (6) we can prove that g, conserves the probability in time:
(14) Tr(p,) = /dr(r|,5t|r) - /dr\Ilf(r)\Ift(r) —1

2'4. The Wigner function for pure state. — From eq. (11) and its conjugate we obtain
the equation of motion of p; (the time dependence is written now explicitly):

) b r, /’ . , hQ 62 82 , ,
(15) zii——p—(gtr——ﬁ=<r|[l'[,pt]_|r>={——-<W—W>+(V(r)—V(r))}p(r,r,t).

2m
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We change the variables in the above equation by using a center-of-mass transform:

/
I'l:(r—;r)a r2=r—rl7
(16) Op(r; + 1‘2/287:1 —13/2,t) _

1 h? 92 ry ry Ty o
in {_Rarlarg * <V<r1 + '2‘) _V<“ - E))}’{” Tgno E’t>'

The Wigner function is defined by the Fourier transform with respect to ry

fw(ry,p,t) = (271]1)3 / C11'2P<1"1 + %7r1 - %,t)e_im'p/h-
We note that, due to the Wigner transform, r; and p are independent variables. It is
easy to show that the corresponding operators commute. Thus r; and p define a phase
space —the Wigner phase space.
After applying the Fourier transform to (16) we obtain on the right-hand side two
terms which are evaluated by using the abbreviation p(+, —,t) for p(ri-+r2/2,r1—19/2,t):

Pm B [ o int)

T ihm(2rh)3 dr10rs
1 8 " i 1 E)fw(rl,p t)
—_— .= |4 iry-p/h —t)=——p. 2
m(27rﬁ)3p ory / r2¢ Pl =) mr dr;

where we have integrated by parts using p — 0 if rq — $o0;

1 w D) ry
—-— e o f 7,r2~p/h —_— — —— —_ t =
II ’13}7,(27Th)3 / drg(, (V (I‘l -+ ) ) V(I‘l 5 >>ﬂ(+, ) )
3 . rl rI
./dr-z‘/dr’é‘(rg - r’)e'”z"’/h<v<r1 + %) - V<r1 - %))P(h ton- -2-,t>-

After replacing the delta-function with the integral

1 i(ra—x")p' /A
(17) (5(1‘2 —I'/) _ W/dp/e (ra—r")p /h’

we obtain

1 . I_ Iy Iy
=——[d ’/d irz-(p PW(V(r +—-> —V(r ~—>> x
1 1 —ir'p' /A r_l _ Ei t>
><————(27Th)3 /dre p(rl—l— 5 T1 7 5

/dprW(rla P/ - p)fW(rhp/’t)'
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We summarize the results of these transformations. Equation (16) gives rise to the
Wigner equation

. / ) 7t / g
(18) af“g£p7t)+%afwg‘rp ):/dPVW(rl,P/_P)fW(T,P/,t)7

where Viy is the Wigner potential,

(19) Vi (r,p) = ;h—@;—h)—g /dr’e-“’p/h(v <r ~ g) - v<r+ g))

Note that the sign of ry has been changed to obtain the most frequently used definition
of the Wigner potential Viy.

2°5. Properties of the Wigner function. — We first outline the equivalence between the
Schrodinger equation and the Wigner equation in the case of a pure state. From ¥, we
can obtain p and thus fw. The opposite is also true: it can be shown that, if we know
fw, we can obtain ¥, up to a phase factor.

Comparing with (4), we can recognize, on the left-hand side of the Wigner equation,
the fieldless Liouville operator. It is easy to see that the Wigner potential is a real
quantity, Viy = Vi,. It follows that fw, being a solution of an equation with real
coefficients, is real. The Wigner function conserves the probability in time:

(20) /dr/dpfw (r,p, )—-/dr/drgp(r—i— 5 T1 %,t)é(rg) = E/dr(rl[),,fr) =1.

In a similar way it can be shown that the position or momentum probability distributions
are obtained after integration over momentum or p or r, respectively

(21) /mﬁwmpwzw%@m, /dﬁw@p,) 7, (p)P.

The most important property of the Wigner picture is that the mean value (A)(t) of any
physical quantity is given by

(22) <mm=/@/@mmnmmmx

where A(r, p) is the classical function (9). This will be proved in Appendix A.

Our goal formulated at the beginning of this section has been satisfied to a large
extent. Equation (20) corresponds to the second equation in (2) and the Wigner function
is real. Bquation (22) is equivalent to (3). The left-hand sides of the Wigner equation (18)
and the Boltzmann equation are given by the Liouville operator. Classical and quantum
pictures become very close. Nevertheless there are basic differences. The Wigner function
allows negative values and thus is not a probability function. It cannot be interpreted as a
joint distribution of particle position and momentum. Actually the Wigner function can
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have non-zero values in domains where the particle density is zero. As follows from (21),
a physical interpretation is possible only after integration.
We discuss the classical limit of (18).

2°6. Classical limit of the Wigner equation. — Assume that the potential V is a linear
or a quadratic function of the position:

V<rir§> :V(r)ia‘gir)g—/—|-...:V(r):FF(r)F2—/+...,

where the dots stay for the quadratic term. The force F can be at most a linear function
of the position. As the even terms of the Taylor expansion of V cancel in (19), the
Wigner potential becomes

1 " i
VW(I‘,P) = W /dr’e' ‘T p/ﬁF(I‘)I‘/

The right-hand side of (18) becomes

(23) / dp/vw(rl’p/ . p)fW (r7p/’ [;) —
E_Q;r—]/l——‘ /dpl / dr' e B PVER (r)y fu (r, ', ) =

-F I‘) 9 —ir’ (p’ —p)/h fw(l“»p,t)
(2mh)3 ()p/ dp’ /dr ¢ Jor (9o t) = F(r)“—‘—-‘ap )

. ain l_. - . — ! I_
where we have used the equality r'e”® (' =P)/* = —ip(9/9p)e™ ™" (p'=P)/" Then the
Wigner cquation reduces to the collisionless Boltzmann equation

(24) 0/W(rw P, t) + _12 . vav(l',p,t) + F(I‘) 8fW(r7pv t) = 0.
ot m or dp

Now consider a minimum-uncertainty wave packet as an initial condition. The Wigner
function of such a packet is a Gaussian of both position and momentum [6]. The latter
can cqually well be interpreted as an initial distribution of classical electrons. Provided
that the force is a constant or a linear function of position, the packet evolves according
to eq. (24). The evolution resembles that of the classical distribution. Despite the spread
in the phase space, the Gaussian components determine the general shape of the packet.
fw remains positive during the evolution.

However, stronger variations of the field with position introduce interference effects.
Near band offsets the packet rapidly loses its shape and negative values appear. Figure 4
shows the negative values which appear at the initial stage of the interaction of a Gaussian
wave packet with a single potential barrier [5].

We will show that, in the presence of phonons, (24) turns into the Boltzmann equation.
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Fig. 4. — Gaussian wave packet Wigner function interacting with a 3nm, 0.3eV potential barrier.
After Shifren and Ferry [5].

2'7. Quantum-statistical mechanics. — The density operator p; = |[¥){¥,|, used to
obtain the Wigner function, corresponds to a system in pure state. Often the state of
the system is not known exactly. Assume that a set of possible states p¢ can be occupied
with probabilities ;. Then the definition of density operator can be generalized (compare
with subsect. 2'3). The density operator for a mixed state is defined as

(25) pr= Z%ﬁi, Z% =1, 7%>0

Then the mean value of a given physical quantity becomes a statistical average of “aver-
ages in states 7. It is easy to see that (13) and (14) continue to hold in this case.

According to the basic postulate of quantum statistical mechanics, the state of the
system is completely specified by the density operator j;. The mean value of A and the
equation of motion of j; are given by

R X 0p 1 .-
(26) (D) =T (pd),  F=—[Hp]_.

The mixed-state Wigner function and equation are derived from j and its equation of
motion as in the case of pure state. Since the derivation is reversible, we can equivalently
postulate fw(r,p,t) as a definition of the state of the system.

Note that if we know the set 4; we can build up the density matrix from (25). This is
for example possible in models where 7; can be obtained from the boundary conditions [6].
However, for more complex physical systems, containing electrons which interact with
other types of quasi-particles, ; are not known a priori. In this case p; and y; are
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obtained with the help of (26). Indeed the corresponding representation of the system is
given by the basis vectors | X;)|r), where the additional degrees of freedom X describing
the quasi-particles are assumed enumerable. We are usually interested in the electron
averages, so that A does not affect X;. By using (26) we obtain

(A0 =T (ped) = Y [ artel(lpAlle) = [ artelptAlr) = Te (54),

where pf = Y. (X;|p¢|X;) is the electron, or the reduced density operator. We can intro-
duce the set of probabilities v; and the set of electron density operators p;"* according to

~ ~e,i Xz 01 X ~e,i
v = Tre ((Xi|pe] X)) >0, Z%’ =1 P = Tr_e((_(%\i/l)_t\-)%ﬁ’ Tre () = 1.

The estimates follow from the fact that j; is a positively defined operator and from the
conservation of the probability. Hence

pi = Z%’ﬁf’i

and we formally arrive at (25). However, in order to obtain v; and P9 we need py, i.e. we
need to solve the evolution equation for the whole system. Usually this is not possible,
moreover we are not interested in the detailed information about the state of the quasi-
particles. This implies to approximate the evolution equation (26) to a closed equation
for the electron density operator. Alternatively this can be done in terms of the Wigner
functions obtained after a Wigner transform of the corresponding density operators.

2'8. Appendiz. — Here we prove the important relation (22). From the Weyl transform
we have

~ 1 . ) o A
A=A(p)= @71-_)6 / ds dq/drdpA(np)e—l(r5+pQ)el(sr+qp) .
Inserting in [ dr’(r’|p;Ar’) one obtains

<A> (f) _ /dr dpA(r, p)/ ?_257;_1)(_;16—1‘(1'5+Pq) /Clr/<r/‘ei(si+q}3)ﬁt (t)lr/>'

The average value (A)(t) appears as the desired phase space integral with the classical
function A(r,p). It remains to prove that the term [ after A is the Wigner function fw.
We make use of the following relations [7]:

ei(sf*—{—qf)) — e——isqh/Qeiqfweisx" eiqﬁ:'r> — lr _ qh).
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The calculation is long but straightforward:

/?;;i)q -—z(rs+pq)/dr /dr” |e 1sqﬁ/2 quezsrlrll>< /" lr>
/?;:)q —Z(rs+pq)/dr’/ dr”’e~Sah/2(y/|elaP |y ) eisr” (" |p()|r'y =

((izsfq ~z(rs+pq)/dr /drlle—zsqh/Zé( _I_qh) isr” (I'H,I",t) —
/ dsdg e~ i(rs+pa) /dr/e—isqﬁ/zeis(r +qh)p(r/ + qh, I'/,t).
(2m)°

Here we set v’ = r; — gqh/2:

deq e~ i(rs+paq) —isqh/2 is(r1+qh/2) qh qh _

ds dq —ipq is(r;—r) qh’ qh
_/(27‘()6 dI'1€ 0 I‘1+-§—,I'1 2 t

dq —ipq/ qh _ qh
/(27[_)38 dr16(r1 I‘)p r1+ p) , I 95 ,t

By setting q = r'/ /i we arrive at the definition of the Wigner function:

dr’ o r’ r’
]=/(27rh)36 p /ﬁp<r+ E,r——j,t> = fw(r,p,1).

3. — Generalized Wigner function of the coupled electron-phonon system

We consider a system of a single electron (or equivalently many non-interacting elec-
trons) subject to a structure potential and interaction with lattice vibrations. The de-
scription of the system is provided by both the electron and the phonon cegrees of free-
dom. We first generalize the Wigner function and the Wigner equation for the coupled
electron-phonon system. The Hamiltonian of the considered system is given by

(27) H=Hy+V+H,+ Hep =
h?
—5- Vet V(r +Zb b quHhZF(q (bge'™™ — bfe~iar),
where Hp is the free-electron part, V(r) the structure potential, Hy the free-phonon
Hamiltonian and H. p, the electron-phonon interaction. In the above expressions b’f and
bq are the creation and annihilation operators for the phonon mode ¢, wq is the energy
of that mode and F(q) is the electron-phonon coupling element, which depends on the
type of phonon scattering analyzed. The state of the phonon subsystem is presented
by the set {nq}, where nq is the occupation number of the phonons in mode q. Then
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the representation is given by the vectors |{nq},r) = |{nq})lr). The generalized Wigner
function [8,9] is defined by (the prefactor (27/A)~3 is omitted for convenience)

.y r R r
fw(r,p, {nq}, {n;}jt) = /dr/e-f.pr /h<r + bR {'nq}|pt|{nél},r - —2—>

The equation of motion of fyw is obtained from (26):

3fw(r)p>{nq},{’flg},t) — 1 / —iPl‘l/h I'/ B N 7 r’
ot T /dr ¢ <r+ 7o \nad [ H, A [{nighr = -2->,

For convenience we denote the right-hand side of the above equation by WT'(H). In the
following we evaluate WT'(H) for each term of the Hamiltonian (27). WT(Hy + V(r))
has already been evaluated within the steps following after (15). The only difference is
that fw in terms I and I1 now contains the phonon coordinates. The free-phonon term
is readily evaluated to

WT(H,) = = (({na}) = el{nig) fw (5,0, {na}, 15}, 1)

where e({nq}) = >, nqfwa. WT(He.) gives rise to four terms which are evaluated
separately. Inserting [ dr”|r”)(r”| in the first one, we get

" 3 / !
/dr’ / dr//€~ipw/h<r+ %’ {nq}’bq/eiqr I'”><I‘Hlﬁt|{nlq}‘r — -:;—> =
i r'/h iq (r+r'/2) r’ - ’ r’
Vg +1 [ drle™Pr/letd r+§,{m,...,an+1,...}|p[|{nq},r*-2~ =
iq'r hg/ oy
Vg +1eT fww [ r,p — —2—,{'n,1,...,an +1,.. b {nght ],

where we have used the orthonormality relation (rjr’) = 6(r — r') and by becomes a
creation operator when operating to the left. The remaining terms are evaluated in a
similar way. We are ready to formulate the generalized Wigner ecquation. The following
short notations are used: {nq}; ({nq}q) are states of the phonon subsystem, obtained
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Fig. 5. — Coupled elements.

from {nq} by increasing (decreasing) the number of phonons in the mode g’ by unity:

(28) (g 2. v,> fw (r,p, {ng}, {ng},t) =
= (({na}) — () fiw (5.0, {na}. (mf}.1) +
+ [ ap Vi (e,0' = )i . B, e, (1) +

-, B
+ ZF(Q') {ezq T/ ng + 1fw (r,p - —;—, {nq};, {n;},t) —
ql

—iq’ hql —
et /’I’Lq/fw (r,p-{———Q—,{nq}q,,{n;},t) —

iq'r h‘ ! -
—e'd ,/nﬁl,fw<r7p+—"; a{”q}’{n:;}q”t> +
+e 9T Il 4 1fw (v, p — b {na}, {ng gt
a W ,p 2 I} qls qlq .

The generalized Wigner equation couples an element fw(...,{n}, {m},t) to four neigh-
borhood elements, as shown in fig. 5 for any phonon mode q. For any such mode, nqg
can be any integer between 0 and infinity and the sum over q couples all modes.

The last two terms in the curly brackets can be obtained by the following operation
applied to the first two terms:

— 1 changes the sign;

— instead of in the left state the phonon number in the mode determined by the
summation index (q') is changed in the right state;
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— in the square roots ngs is replaced with Ny

In what follows we denote the last two terms by i.c.
Consider the evolution of an initial state of the system defined at time ¢ = 0 by the

function fw(r, p,{nq}, {ng},0). It is convenient to use the integral form of (28), which
includes explicitly the initial condition:

(29)  fw(r,p, {ng}, {nght) = fw (¥(p,0, Ps {ng}, {ng}, 0)e™/Alelinal=elinght o

it
/ d' o~/ REnaD—eni(E=t')
JO
X |: / dp/VW (r(p,t’)ap/ - p)fW(r(p,t’)ap/> {nq}: {n/q}vt/) +
., o
* () {ermmn ¥ fw( fa,P = g {nak e i}t ) -
—e T /Mg fw (r(pyt/ P + {nq}—,, {nq} t ) + i‘c.H .

Here r(p 1y =1 — (p/m)(t —t') is a classical trajectory initialized by r, p at time ¢. The
integral form can be proved by taking the time derivative of (29) which should lead us
o (28). To see this, we rewrite (29) by keeping only the relevant variables and writing
explicitly the time dependence of the trajectory: v(t — ') = rp ey =1 — (p/m)(t — 1),

Fe(E=t")t"),._, = £(2(0),0)M”

lLII
_t/,:t+/0 At K (e (t=t')) e e (t—t), )|, -

The equation is written in this way to remind that the time derivative is taken over
the trajectory, so that we have to differentiate with respect to ¢ and set ¢/ =t in the
final result. The left-hand side readily gives the fieldless Liouville operator acting on f,
while the right-hand side gives Af(r,t) + K (r) f(r,t), compare (28).

4. — Weak coupling and equilibrium phonons approximations

Of interest is the reduced Wigner function, which is obtained from the generalized
Wigner function by taking the trace over the phonon states. An exact equation for
the reduced Wigner function cannot be obtained since the trace operation does not
commute with the electron-phonon interaction Hamiltonian. Derived is a model which
approximates the generalized Wigner equation, but is closed with respect to the reduced
Wigner function. The model is general enough to account for the quantum character of
the interaction with the phonons. The electron-device potential part of the transport is
treated on a rigorous quantum level. The model further gives rise to simplified model
equations which end up with the classical Boltzmann equation. The derivation introduces
a consistent hierarchy of assumptions and simplifications.
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4'1. Weak coupling. ~ We begin with the assumptions which simplify (29) towards a
model equation set for the electron Wigner function. Of interest are the diagonal elements
of the generalized WF. Thus the initial condition is assumed diagonal with respect to the
phonon coordinates, which corresponds to the evolution process of an initially decoupled
electron-phonon system:

(30) fVV(r’ P {nq}v {nq}! t) = fVV(r(pqO)? p, {TLq}, {”q}’ 0) +

t
"‘/ dt’ l:/dP/%V (r(p,t’)> Pl - p) fW (r(p,t’)’ P/: {nq}7 {nq}’t/) +
0
., hq!
+ Z F(q’) {elq C(p.t/) /ng + 1fw (I‘(p’t/), P- o5 {nq};’,, {nq}’ t/> _
ql

—iq'r, . hq/ —_ N
—e e g fw <r(p,t')a p -+ 5 {naty {nq},t') + I'C'}]'

A diagonal element is linked to elements, called first off-diagonal elements, which are
diagonal in all modes but the current mode g’ of the summation. In this mode the
four neighbors of ngs, ng, namely ng £ 1, ng and ng, ng £ 1, are concerned. This
is schematically presented in fig. 6. According to (29), the first off-diagonal elements
are linked to elements which in general are placed further away from the diagonal ones
by increasing or decreasing the phonon number in a second mode, q”, by unity. These
are the second off-diagonal elements. The only exception is provided hy two contribu-
tions which recover diagonal elements. They are obtained from ({{nq};”,};,,, {nq}) and
( {nq}:;,, {nq};“,,) in the case when the two phonon modes coincide: q’ = q”’. Note that
each link of two elements corresponds to a multiplication by the factor F.

The next assumption is that F' is a small quantity. While the first off-diagonal ele-
ments give contributions to (30) by order of F2, the second off-diagonal elements give
rise to higher-order contributions and can be neglected. The physical meaning of the
assumption is that the interaction with a phonon in mode q’ which begins from a diago-
nal element completes at a diagonal element by another interaction with the phonon in
the same mode, without any interference with phonons of other modes. The assumption
allows to truncate the considered elements to those between the two lines parallel to
the main diagonal in fig. 6. The corresponding equations for the first two off-diagonal
terms in (30) are obtained by using (29). The remaining two elements, which compose
the i.c. term in (30) give rise to two integral equations which are complex conjugate to
the first two. In this way the relevant information is provided by (30) and the integral
equations for the first two elements. The latter will not be stated explicitly, but only
their peculiarities will be discussed. As the initial condition is assumed diagonal, it does
not appear in these equations. The role of an initial condition is played by the terms
containing the diagonal elements. It is important to note that the pre-factor of the first
off-diagonal element fw(...,{nq}%....) in (30) is \/ng + 1. The same pre-factor ap-
pears in front of the diagonal terms in the equation for the first off-diagonal element.
The same holds for fw(..., {nq};,, ...) which has a pre-factor /Mg - The two diagonal
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Fig. 6. - Diagonal and first off-diagonal elements.

terms in the equation for fw(...,{ng}tqy,...) contain the same pre-factor /Mg This
feature will be used below, when we consider the trace over the phonon coordinates.

4'2. Equilibrium phonon averages. -~ The set of eq. (30) and the two equations for
the first off-diagonal elements constitutes the basis for the derivation of the principal
transport model for the reduced WF. The set is still infinite with respect to the phonon
coordinates, which are to be eliminated by the trace operation. The next assumption is
that the phonon system is a thermostat for the electrons, 4.e. the phonon distribution
remains in equilibrium during the evolution:

e~ Twang /KT

P(?I /dr/dp Z fW Y(p,tr), P, {nq} {qu} t) - eq(nq) W

{ngr}

Here P(ng,t') is the probability of finding ng phonons in mode q at time ¢/, 3" denotes
summation over all phonon coordinates but the one in mode q, and n(q) is the mean
equilibrium phonon number (Bose distribution),

_ 1 -
(31) Z nqPeq(nq) ehwa/kT _ 1 Z Feq(nq) =1

nq=0 ng=0

If there exists a closed model for the reduced or electron Wigner function f(r, p,t') which
is equivalent to the obtained set of three equations for the generalized WF, then for any
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time 0 < ¢ <t the following must hold:

(32) fw (. p. {ng}. {ngh,t') = f(r,p,t) H Peq(ng).

q

This property holds for the initial condition which is the free term in (30). We assume
that (32) holds until time ¢ and investigate if it remains true after a time step At.
From (30) we obtain

(33)  fw(.., {”q}e {naht +AL) =(...)fw(.. {”q} {nq} t) + AtZF

The first term on the right satisfies (32) and we pursue the second term, which refers to
the off-diagonal elements fw(..., {nq}f;,, ...). It can be shown that the second bracket
includes terms which depend on the phonon coordinates by the following factors:

! /
(34) (ng' + 1) Peq(ng’) H Peq(ng), (nq +1)FPeg(ng + 1) HPeq(”q)’
q q
7
N Peq(Ng) HPeq(nq), N Pog(ng — 1) H Peql(ng).
q

We first conclude that (32) is violated after the time step, since, according to (34), the
phonons in mode q’ are driven out of equilibrium. Here in help comes the assumption
that the phonon system stays in equilibrium. It is convenient to think that the phonon
system immediately recovers the equilibriumn after the interaction.

Now we can take the trace over the phonon coordinates. The trace means to sum over
nq for all modes q, which is readily done with the help of (31) and the following equalities:

n(q) = Z(nq +1)Peq(ng + 1), n(q)+1= Z”qpeq(”q -1).

Nq

As a result, the phonon coordinates are replaced by the following numbers in the second
bracket, compare with (34):

This is an important step which allows to close the equation set for the electron
Wigner function.
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5. — Models for the electron Wigner function

5'1. Main model for the electron Wigner function. — In the obtained set of equations
the reduced Wigner function fw is coupled to two auxiliary functions f; and fo:

(35) fW(ra p,t) = f (r(p 0),p70) +

/ dt’ [/dp Vi (rp.): B’ = P) fw (r(p,e), D' 1) +

0

iq'r h
+ F2 { o (pt).h( pt')vp—'?qﬂd)_
q/

—1 ,I’ ’ h '
—e ¥ T (p,t )fg (r(p,t’)vp -+ —g‘,t/) —}—C.C.}:l,

= o/
) Are-"Er) =

‘t/ . 7 1" ﬁq/
) di’e™wa (£ =1 )[/ dp VW( (m.a )P l—p+l_2—> x

X f] (I‘(p q/ {II), p t//) - lq r(p a’.t'") {(n(q/) ‘l“ l)fw (I‘Ep’q,vtu), p, t//) -
_l”’(q/) jW (r,(p,qut“)a P ﬁ'q/7 t”) }:l 3
[
CUNACR TR NOR

t g
iws (8 =t hq
/0 di’eiwa (- )[/ dp'Vaw <r/(p,—q',t”)’p P=7 )

sz(r’(p,—qf,wp’»f”)+eiqr(”'_q"m{”( ) w (¥ a0y P ) -

= (@) + 1) fw (v(p —q 4y P+ 1 ¥ )H

where r(p Q) = —((p=hq'/2)/m)(# —¢"). Equations (36) and (37) are two integral
equations with heo terms given by the curly brackets (with the corresponding pre-factors
and integrated over #'). The solutions fi and fo can be formally presented as a series of
consecutive iterations of the kernel (the term with Viy) on the free terms. A replacement
in (35) leads to a closed equation for fy, which is the main model for the electron Wigner
function. This equation is still too complicated and needs further approximations.

5'2. The Levinson equation. - An explicit solution of (36) and (37) is possible if the
system is considered in a homogeneous semiconductor with an applied constant field F.
According to (23), the Wigner potential term becomes proportional to F - V. A single
equation is obtained after few steps of transformations. First, egs. (35) to (37) are
differentiated with respect to time to obtain the integro-differential form. The term
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containing F is transferred to the left which completes the Liouville operator as in (24).
It can be shown that, by using the following Ansatz:

the relation (2q'p — iq'?)/2m = (1/R)(e(p) — e(p — Aq')) and assuming a homogeneous
initial condition, the space coordinate r becomes irrelevant and can be omitted. The two
auxiliary equations are transformed back into integral equations where, now, the field
determines the trajectories: p(ry = p — F(t — 7). In this way f1 and fa are expressed in
terms of fi. A replacement in the differential form of (35) along with the transformation
Yoqr ™ 2 = (V/h?) [ dp’ gives rise to the equation

t
(38) (% +eE - Vp) fw(p’t) —_—/ dt,/dp/ %
0
x (S(9, 2,1, ') fiw (Dl ) S(p. P tt) fur (Pun )
W ., :
S(p',p,t.t") = 77;?)_F2(q ) {(n(q/) + 1) cos <[/ d’rQ(p(T),p/(T))> +

t
+n(q’) cos (/ dTQ(pl(,r),p(,r))):l,
-tl

€(p(ry) — 6(1:’21-)) + hwq _p-p
h 3 q - h .

Q(p(.r), pl(‘r)) =

This equation has been derived by Levinson from the homogeneous electron-phonon den-
sity matrix [10]. Barker and Ferry derived an equation which is equivalent to (38) with
the only difference of an exponential damping factor in § which accounts for the finite
lifetime of the carrier [11]. The Barker-Ferry equation can be derived [12] also from the
single band model of the electron-phonon quantum kinetics in pulse excited semicon-
ductors proposed in [13]. Equation (38) reveals interesting quantum effects of collisional
broadening, retardation and the intra-collisional field effect. These effects have been
theoretically predicted in quantum regimes of the electron-phonon interaction [14, 15}.

The used physical model is for GaAs material with a PO phonon with constant
energy fw. The initial condition is a Gaussian function of the energy. A choice of a very
low temperature, when the physical system has a transparent semiclassical behavior,
allows conveniently to study quantum effects.

572.1. Collisional broadening and retardation. The effects of collisional broadening and
retardation exist already at zero electric field. In this case it is convenient to use the
spherical symmetry of the task. The equation is transformed into spherical coordinates
(k,0,¢) and integrated over 6 and ¢. The solution depends now only on k = |p|/h
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Fig. 7. - Initial distribution function (initial d.f.), semiclassical (SC) and quantum (Q) solutions
kf(0,k,t) for 100 fs evolution time at zero electric field.

and the time. Figures 7, 8 and 9 present snapshots of the evolution of the semiclassical
and quantum solutions kf(0, k, ¢) for times 100 fs, 200 fs and 4001fs as a function of k2.
The quantity & is proportional to the electron energy in units 10'* m=2. Semiclassical
electrons can only emit phonons and lose energy equal to a multiple of the phonon
energy fw. They evolve according to a distribution, patterned by replicas of the initial
condition shifted towards low energies. The electrons cannot appear in the region above
the initial distribution. The guantum solutions demonstrate two effects of deviation
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Fig. 8. ~ Initial distribution function (initial d.f.), semiclassical (SC) and quantum (Q) solutions
kf(0,k,t) for 200 fs evolution time at zero electric field.
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Fig. 9. - Initial distribution function (initial d.f.), semiclassical (SC) and quantum (Q) solutions
kf(0,k,t) for 400 fs evolution time at zero electric field.

from the semiclassical behavior. There is a retardation in the build-up of the remote
peaks with respect to the initial-condition peaks. The replicas are broadened and the
broadening increases with the distance to the initial peak. The broadening is due to
the lack of energy conservation in the interaction. At low evolution times the cosine
function in eq. (38) weakly depends on the phase space variables. With the increase of
time, the cosine term becomes a sharper function of these variables and in the long time
limit tends to the semiclassical delta-function. Accordingly, the first replica of the 100 fs
is broadened. It resembles the corresponding replica of the semiclassical solution after
400fs evolution time. The retardation of the quantum solutions is associated with the
memory character of the equation. The time integral on the right-hand side of eq. (38)
causes the delay of the build-up of the replicas.

5'2.2. The intra-collisional field effect (ICFE). We first discuss some numerical aspects
of the task posed by the applied electric field. The field destroys the spherical symmetry
of the equation. The dimensionality of the task increases and furthermore problems
with the simulation domain arise due to the correlation of the phase space and time
coordinates. The solution for a phase space point p at instant ¢ is related to the solutions
at shifted points p—F(t—¢"). The shift depends on the electric field and the time interval
0 <" <t and hence no general integration domain can be specified in the phase space.
This problem is solved by a transformation to a coordinate system moving with the field.
A new variable p' and function f* are introduced such that

pi=pi—Ft, pi(r)=pl+Fr, f(p,t) = f(p' +Ft,t) & fi(pt 1),
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where p; stands for p and p’, respectively. fw on the right-hand side of (38) becomes
F(pran.t) = F(p} + Fe,¢) = f(pt,1).

The transformation decouples the phase space and time arguments of the cosine functions
in S according to

e(p'(r)) —e(p(7) = €(p") — €(p') +20F(a)7,  Fla)=5-aF

Due to this transform, the integral form of (38) simplifies to (the superscript ¢ is omitted)

7 t .
(39) Fpt) = é(p) + /0 at /0 at” / ap' (S (0, p, ¢/, ") £ (0, 8") —
—S(p3p/7tl’t”)f(pat”)}’

where ¢ denotes the initial condition. The symmetry around the direction of the electric
field can be used to reduce the variables in the equation. In cylindrical coordinates (r, k, 6)
with » chosen normal to the field direction, the relevant variables become z = (r, k),
where z is a two-dimensional point. For zero lattice temperature (nq = 0) the equation
obtained reads

(40) flz,t) = ¢(x)+ /OL dt” /G da’ [K(x,rc’) X
x{ (/t dt Sl(a;,:r',t’,t")}f(x’,t”) + { /tt dt’Sg(iE,:L'/,tl,t”)}f($,t"):|,

f/// 7
where 2 € G = (0,Q) x (-Q,Q), @ determines the simulation domain and

gr!
V(=2 + (K = E)2)((r+1")2 + (K = k)?)

Sy, o’ 'ty ==Sy (2, 2, t', t") =cos ((Q(l,.bl) - %F(k’ ~ k) (¥ +t”)> (t' ~ t”)) ,

(41) K(2,2")=K(r,r' k k)=

1

where G is a constant. Note that K has a pole at © = 2’. Equation (40) poses severe
memory requirements for the deterministic numerical approaches. It has been solved by a
randomized iterative Monte Carlo algorithm described in [16]. The solutions are obtained
on cut lines parallel to the field (k > 0,7 = 0), opposite to the field (k < 0,7 = 0) and
normal to the field (k = 0,7 > 0). Figure 10 compares the 200fs solutions as a function
of k < 0 for different positive values of the electric force E. The first replica peaks of
the 6 and 12kV/cm solutions are shifted in the field direction. For negative states the
distance to the initial peak increases. Moreover, the solution in the classically forbidden
region, to the right of the initial condition, demonstrates enhancement of the electron
population. This effects can be associated with the structure of the first kernel of (39),
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Fig. 10. — Solutions |k|f(0, k, ), at negative k values, and evolution time 200fs. The electric
field of 0, 6kV/cm, and 12kV/cm points to the left.

which controls the electron transfer between the states. Responsible for the build-up of
the peak is the first iteration term, obtained by replacing f with the initial condition
@. The cosine in eq. (41) has a permanent contribution to the solution if the pre-factor
of (t' — ") is around zero. States with &’ to the right of the k region of the first peak
become important. For such states &' — k < O (the negative k region is examined) and
since F' is positive the energy of the field is added to the phonon energy. Accordingly,
the solution behaves as if in the presence of a phonon with energy higher than fw; the
distance between the first replica and the initial condition increases. In the classically
forbidden region, ¥’ — k > 0, so that the energy of the field is subtracted from the
phonon energy. The pre-factor is small for states k close to the &’ region of the initial
condition. Accordingly, the electron population in the vicinity to the right of the initial
condition increases.

A comparison of the first replicas and the main peaks under the initial condition shows
that the field has a pronounced influence on the collisional broadening and retardation.
As demonstrated by additional numerical experiments, this effects depends on the field
strength and direction.

From the above considerations it follows that just opposite effects should appear in
the region of positive k values. Indeed, the first peaks in fig. 11 are shifted to the right
since now &' —k > 0 and the energy of the field is subtracted from the phonon energy. In
the semi-classically forbidden region, to the right of the initial condition, the pre-factor
is large and there is no enhancement of the electron population.

No shift in the replicas of the solutions in the direction normal to the field should
exist, due to the symmetry of the task. This can be used as a particular test for the
consistency of the approach. As can be seen from fig. 12, the distance between the first
replica peaks and the main peak does not depend on the field. Nevertheless, the field has
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Fig. 11. - Solutions kf(0, k, t) for positive k values and evolution time 200 fs. The electric field
is 0, 6kV/cm, and 12kV/cm.

a prouounced cffect on the broadening and retardation of the solutions: A comparison
of the first replicas and the main peaks under the initial condition in figs. 10, 11, and 12
shows that the field influences the effects of collisional broadening and retardation.

5'3. Approzimate model for the reduced WF. —~ Under general conditions for the po-
tential we look for approximate solutions for the functions f; and fo. One option is to
consider only the zero-order terms in the Neumann expansions. That is, only the free
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Fig. 12. - Solutions 7 f(r,0, ) for an evolution time of 200 fs. The electric field E is 0, 6kV /cm,
and 12kV/cm.
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terms of (36) and (37) can be used in (35). Unfortunately in this case the ICFE is
entirely neglected. Alternatively, in order to avoid the whole complexity of the general
model. we can utilize some of the results derived for a homogeneous field. The potential
V in the two auxiliary equations is approximated to a linear function —F -r. The two
equations can be solved by using Newton's trajectories defined by

yP(y) —hq'/2 !

1 ;
. o
(42)  pry=p-cE(t-T) r(p,q',r)zr"/T dy———— =1+ 5-('-7).

After replacement in the integro-differential form of (35) one cbtains

P nt
@) (5429 fwlept) = [ op - p)fuwlept) + [t x

h
x (S(pﬂp,t, t') fw (r + 57%(1‘ ~ t’),p;t,),t') -

Igq
/ ! ) B N P ot
~S(p.p«,t,t)fw<r+2m(t t),p(t),t)),

2V F2 ,
S(pl’p’t"tl) = (271';?;13 (Tl(q) COs (Q(p/’p,t, t )) + (n(q) + ]‘) €O8 (Q(p’p/7t’tl))) )
b (D) — €(p(ry) +w e
Q(p,p',t,t’)=/d7 () h(f) q’ p(T)Zp*F(t“T), quhp.
tl

This equation is a generalization of the Levinson equation in the full six-dimensional
phase space. The latter is recovered in the case when V is linear and a space-independent
initial condition is assumed. Thus the ICFE has been properly taken into account.
Moreover no approximations are introduced for the coherent part of the transport process:
if the phonon interaction is neglected, the common Wigner equation for an electron in
a potential field is recovered. The equation becomes more transparent for a physical
analysis when it is transformed into an integral equation. The main peculiarity of (43)
is the non-locality in real space. The Boltzmann distribution function in point r, p at
time ¢ collects contributions only from the past of the real space part of the trajectory 3
passing through this point. Because of the quantum character of the phonon interaction,
the solution of (43) can collect contributions from all points in the phase space. Formally
a test particle that carries the value of fiv can be assigned to a given phase space
point at time ¢”. The interaction begins at t” when the particle absorbs a half of the
phonon momentum Aq'/2. The real space part of the trajectory of the particle changes
accordingly. The interaction has a finite duration so that the particle can appear on £ at
some time ¢’ <¢. At time ' the second half of the phonon momentum is absorbed by the
particle. The particle now has the right coordinates to continue to r, p at time ¢. The
process corresponds to a real absorption of a phonon with mode q’. Alternatively, virtual
absorption occurs when the particle releases half of the phonon mode. Note that a next
interaction can begin only after completion of the current one. This is in accordance
with the assumption of weak scattering we did for the generalized Wigner function. It is
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concluded that besides ICFE the finite duration of the phonon interaction gives rise to a
space non-locality of the quantum transport process. The momentum conservation law
holds after the interaction completes as in the Boltzmann case. But there is no energy
conservation even in the most simple homogeneous case, where the electric field is zero.
The energy-conserving delta-function in the Boltzmann type of interaction is obtained
after a limit which neglects the duration of the collision process.

6. — Classical limit in the electron-phonon interaction

We consider the classical limit of the electron-phonon interaction in (43). The same
result will be obtained if we take the limit in (36) and (37) of the general model and
replace the results in (35). The time integral in (43) is of the form

¢
(44) / dreMem p( 7).
0
The following formal limit holds in terms of generalized functions:
L e |
(45) lim — [ dre'/M7¢(r) = $(0) < wd(e) +iP— > .
=0 R Jo €

The actual meaning of the limit is that the product of the energy and time scales become
much larger than /. The mathematical aspects of the derivation are considered in [17].
As applied to the right-hand side of (43), limit (45) leads to cancellation of all principal
values P. This follows from the fact that (43) contains only real quantities. The energy
and momentum conservation laws are incorporated in the obtained equation. The dif-
ferential form of the latter resembles the Boltzmann scattering operator as added to the
Wigner potential operator:

8 / /
(46) (a -+ %’;— : vr) fW(r7p:t)=/C1p VW(r’p - p)fW(rvp,at/)"l"

+ / dp' (fw (£, 0, 1) S (0, B) — fw (2,2, )S (B, P')).

50", 0) = 75 1 {FF(@) 23 (e(p) —e(p) ~ s n(a)+

+|F(—q)[8 (e(p)—€(p') +hw_q) (n(-a) +1)},

where q = (p — p')/h and |F|? = h2F? is the electron-phonon matrix element.

Equation (46), called Wigner-Boltzmann equation, will be in the main focus in what
follows. The interaction with phonons is treated classically, while the interaction with
the Wigner potential is considered on a rigorous quantum level. A classical limit in
the potential term of the obtained Wigner-Boltzmann equation recovers the Boltzmann
equation, see (24). Thus eq. (46) is one step higher in the derived hierarchy of transport
models shown in fig. 13.
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Fig. 13. — Hierarchy of transport models.

7. — Particle models for the Wigner-Boltzmann equation

While the flow of approximations in fig. 13 goes downwards, the numerical approaches
climb from the bottom of the figure. In the last 30 years Monte Carlo method has been
widely recognized as the most efficient numerical approach to the Boltzmann equation.
The Levinson equation has been solved by a backward Monte Carlo method which can
be efficient up to 0.5 picoseconds evolution time. During the last decade the method
has been generalized for solving the semiconductor Bloch equations [18] and other top-
ics of the ultrafast phenomena in photo-excited semiconductors, see {19} and references
therein. The base of any Monte Carlo approach is the underlying particle model. We
first introduce some concepts of Monte Carlo integration. They are used to develop a
particle model for the Wigner-Boltzmann equation (46). In the obtained model particles
are associated with a sign and thus become positive and negative. The sign is the only
property of the particles related to the quantum information. All other aspects of their
behavior resemble Boltzmann-like particles. This shows that the analogy between classi-
cal and Wigner transport pictures can be even closer. The sign is taken into account in
the evaluation of the physical averages. The sign has a physical meaning, since positive
and negative particles which meet in the phase space annihilate one another. The Wigner
and Boltzmann transport pictures are explained in a unified way by the processes drift,
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scattering, generation and recombination of positive and negative particles. The model
ensures a seamless transition between the classical and quantum regions.

7'1. Concepts of Monte Carlo method.

7°1.1. Random variable. Consider a random variable 1 which takes values 1(Q) with

probability density py(Q). Here Q is a multi-dimensional point. The expectation value
Ey of 1 is given by

(47) B, = /'de(@)w(@).

The simplest Monte Carlo method evaluates E, by performing N independent realiza-
tions of the probability density p,. Generated are N points @y, ...,Qy, called sampling
points for the random variable ¢). The sample mean 7 estimates the expectation value Ey,

(48) By~ = Zw Qi)

with a precision which depends on the number of independent realizations N and the
variance of o, of the random variable. According to the “rule of the three sigma” [20]

(49) P(1E, —n < 322 ~ 0.997,
! VN

the probability 7 for 7 to be inside the interval 3¢,,/v/N around Ey is very high (0.997).

7°1.2. Evaluation of integrals. The concept of Monte Carlo approach for evaluation
integrals is to present the given integral as an expectation value:

Q)

(50)  I= /f(Q)dy . / QLS.

Q) > 0, /b(@)dy -1

of the random variable ¢ = f/p. The probability density function p can be arbitrary, but
admissible for f: p # 0if f # 0. Different random variables can be introduced, depending
on the choice of p. All of them have the same expectation value I but different variance
and higher moments. It can be shown that the lowest variance is obtained if p is chosen
proportional to | f].

7°1.3. Evaluation of integral equations. Consider a Fredholm integral equation of the
second kind with a kernel K and a free term fo:

(51) £(@Q) = / AQ'F(QVK(Q.Q) + fo(Q).
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Iteratively replacing the equation into itself, we obtain the solution expanded into a
Neumann series. The terms of the series are consecutive iterations of the kernel on the
initial condition. Each term in the series is a multiple integral of the type of (50) and
can be evaluated by a Monte Carlo method. Now assume that we are not interested in
the solution itself, but in the inner product of f with a given function A:

) =(4.) = [ d04Q)(@)
Consider the following equation, called adjoint to (51):
(52) 9(Q) = [ 1QK(@.Q)9(@) + A(@).

If (51) is multiplied by g, (52) is multiplied by f and the two equations are integrated
and compared, it is obtained that

(53) ) = (4.9 = (fog) = [ 40 (@)s(@).
To evaluate {A) we can use the Neumann expansion of (52)
(54) o(@) = [aq (5(@ _Q) + K@, Q)>A(Q),
n=1
K'(Q0Q) = [ dQuK(QL Q)K" (01,Q).

This gives rise to a series expansion for (A) = 3°,(A);. For example, the second term
becomes

N fo(@)K(Q.Q)E(Q1,Q)AQ2)
s = [ 49 501 00:R(@)P(@' Q)P @10 REEGIL G040

Actually the term has been augmented with the help of the probabilities Py and P in
order to resemble (50). These probabilities are used to build the so-called numerical
trajectories:

- Po(Q') selects the initial point Q' of the trajectory. Py must take non-zero values
in the points where fy is different from zero.

~ From a given point Q' the probability P(Q’, Q) selects the next trajectory point Q.
In order for P to be a probability, it is required that [dQP(Q',Q) = 1VQ'. Fur-
thermore P must be different from zero where K is non-zero.
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The random variable in (4) is a product of weights (fo/Po)(Q'), (K/P)(Q1,2) evaluated
at each selected point in the row Qp — Q; — @9, obtained by application of Py —
P — P. The mean value of N realizations of the random variable calculated over
the trajectories (Q' — Q1 — Q2);, @ = 1,..., N, evaluates (A);. Here we used the
iterative character of the multiple integral for (4)s to introduce a consecutive procedure
for the construction of the trajectory. In this way the trajectory can be continued by
consecutive applications of P. Such trajectory can be used for the evaluation of the
consecutive terms in (A). Apparently a trajectory can be associated with a “numerical”
particle which jumps between the consecutive points. Qur goal is to find a particle model
where the concrete choice of Py and PP incorporates physical features in the numerical
particles as much as possible.

8. — Physical averages in the stationary Wigner-Boltzmann transport: prob-
abilistic analysis

8'1. Formulation and reformulation of the transport problem. — From now on we adopt
the common notations in the field and use the wave vector k = p/# instead of the mo-
mentum p. The Wigner phase space is thus composed of the real space coordinate r and
the wave vector k. We consider the case of stationary transport, where the physical con-
ditions imposed on the boundaries determine the device behavior. The device exchanges
carriers with two or more reservoirs through the contacts denoted by b. Open-system
boundary conditions are provided by the Fermi-Dirac distribution functions fu{rs, k) in
the contacts [4]. The solution fw(r,k) of the Wigner-Boltzmann equation is used to
obtain the average values of all physical quantities of interest, recall eq. (22):

(55) (A) = /D dr /‘dkfwu,k)A(r,k) = (fw 4),

where D is the device domain. Equation (55) asserts that, in order to evaluate the
averaged value of interest (A), one needs to know the solution fyy inside the device. An
alternative expression for the mean value (A) can be found from the adjoint integral form
of the WB equation. The derivation of this expression begins with the revision of the
integro-differential form of the equation.

8'1.1. Integro-differential form revised. The stationary form of eq. (46) is
(56) V(k) . Vrfw(r, k) = /dk’Vw (r, k/ - k) fw(r,k) -+

+/‘ K foy (r, k') S (K, k) — fw (x, k) A(K).

Here v(k) = hk/m is the velocity. S(k’,k) has the meaning of the rate for scattering
from state (r,k’) to state (r,k) due to phonon interaction. A(k) = [ Sk, k")dk’ is the
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phonon out-scattering rate. The Wigner potential (19) loses B3 from the denominator
because of the transition to the wave vector:

67)  Vi(rk) = 77?(%)“3 /dsexp{—z’k o] (v (r - -;-) - V<r + -Z—)) .

The characteristics of the Liouville operator in (56) are particularly simple Newton tra-
jectories (no force):

(58) r(t) =r + v(k)t, k(t) =k.

We note that the results derived in what follows do not rely on the particular form of (58)
(which is due to the stationary fieldless form of the Liouville operator in (56)), but can
be obtained for the general form of the Liouville operator. As discussed in Appendix A, a
stationary trajectory (r(t),k(t)) can always be initialized by the phase space point (r,k)
at time 0. Equation (56) can be reformulated by a decomposition of the antisymmetric
Wigner potential into two complementary parts:

Kol 10 = V(0 = Wi k), () = [ Ak,

The function V{{, equals Viy if the Wigner potential is positive and is zero otherwise:
Vi = Vwé(Vy) with € the Heaviside step function. The meaning of the function ~
is discussed in the next section. By adding ~(r)fw(r,k) to both sides of (56), the
equation becomes

(59)  (v(k) Vot pr, k) fw(r. k) = / dk'T (x, k, k') fiw (v, k),

(60) I(r,k k) =Vi(r kK —k) - Vit (r,k—k) + Sk, k) +vk)d(k - k),
(61)  p(r.k) = Ak) + v(r).

With the help of (58), eq. (59) is transformed into an integral equation.

8°1.2. Integral form. To obtain the integral form of the stationary Wigner-Boltzmann
equation, we consider a given phase space point (r,k). This point determines uniquely
a phase space trajectory, (r(t),k(¢)) in backward parameterization, ¢ < 0. Consider the
parameterized equation (59)

(62)  (v(k(t)) - Vaq +(r(t), k(1)) fw(x(t), k(1)) = / dk'T (x(t), k (1), K') fw (e(2), k).

If both sides of (62) are multiplied by the integrating factor exp[— j:) p(k(y), r(y))dy],
the left-hand side represents a total time derivative:

(63) Lo~ [ awan] i) = exp - [ swaliio
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Here I'[f](t) denotes the right-hand side of (62) and

ily) = p(k(v),x(y))dy,  F(B) = fw(r(®), k(2).

This equation can be integrated straightforwardly. The upper bound of integration should
be t = 0 to obtain f(0) = f(k,r), the value of f at the given phase space point. The
lower time bound has to be chosen such that r(t) and k(t) take on values at which the
distribution function is known. In the steady state the distribution function is known
only at the device boundary. An appropriate lower time bound is therefore the time, say
ty,, at which the trajectory crosses the simulation domain boundary. Apparently, this
time depends on the point k, r under consideration. For trajectories closed in D the time
tp 18 —oo. Integration of (63) in the time bounds discussed above results in the integral
form of the stationary Wigner-Boltzmann equation

(64)  f(r.k) = / dK’ /to FOe(t),X) T (t), K k(') x

’

Jole k) = fio (v (1), k(t,)) exp [— /,

1

0
X exp {~/t u(r(y),k(y))dy} + fo(r, k),
0
mr(y),k(yndy} b =t (k).

The equation can be understood in analogy with the integral form of the Boltzmann
equation. The latter is obtained by formally setting the Wigner potential to zero. Then,
the exponent in (64) becomes the probability for a particle to drift without scattering by
phonons during the time interval (#,0) on the proper trajectory §(r,k), which arrives
at (r, k). There are two contributions to the value of f in the point (r,k). fg is the value
of the boundary function f,, which survives on 3 despite the action of the phonons. The
other term gives cumulative contributions from previous times ¢': the values of f located
at r(t') scatter according to S from everywhere in the wave vector space to the proper
k(#'). The particular values fS are further multiplied by the exponent to filter out the
part which is scattered out of # by the phonons. This picture can be maintained when
the Wigner potential is switched on. Then Vvt in (60) has a clear meaning of scattering
due to the Wigner potential. The function + can be interpreted as an out-scattering
rate due to the Wigner potential, in strict analogy with the phonon out-scattering rate
A. Then v§ becomes a self-scattering function. The major difference between S and I’
comes from the fact that, while the former is strictly non-negative, there is a minus sign
in (60). This sign precludes a direct probabilistic treatment of the equation in terms of
classical particles.

After this step, the boundary conditions fy appear explicitly in (64). fo, along with
the solution g of an equation adjoint to (64), give rise to the desired expression for the
physical averages.
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8'1.3. Adjoint equation. Equation (64) can be formally written in the standard
form (51) of a Fredholm integral equation of the second kind:

(65) flrk) = / dr’ / A (KK (K )+ folr ).

The kernel K has been augmented to account for the r’ integration by a spatial delta-

function:

0
(66) K(r'. K. r.k) = / AT (x' K k(t')) x

—oc

0
X exp [— ./t’ u(r(y),k(y))dy} S(x' —x(t)) op(r').

The indicator function of the simulation domain #p ensures the proper lower bound
to (r.k) of the time integral. The adjoint equation has the same kernel as (65) but the
integration is carried out over the unprimed variables, see (52). The free term is chosen

to be the physical quantity of interest A:
(67) g(r' . X) = /dr/dk K(r' K, rk)g(r, k) + A(r', k).

As cbtained from (64), eq. (67) assumes a backward parameterization of the trajectories.
Forward trajectories are introduced by first changing the integration variables from r,
k to r’ = r{t'), k¥” = k(t') back in time over the trajectory initialized by r, k. Apply-
ing {A.3) and (A.4), the adjoint equation (67) is obtained in forward parameterization.
The integration on r’ can be achieved using the delta~-function in K. A replacement of
k" by k and —¢t' by ¢ gives rise to the following compact form:

(68) (r'.X) / dk / dtlp ()T (v, K k) x

o]

X exXp [ / n(r' (), k(v))dy | g(x' (), k() + A(r', k).

Here, (r'(t),k(t)) is a forward trajectory initialized by (r’,k). The equation has the
desired property that the integration is carried out over final states and that the time
variable is positive. According to (53) the averaged value of the physical quantity A is
expressed through the boundary conditions f; and the solution of (68),

o]
00 )= [ e [ ahee). k) ew | - [ et ko)uotr)

b

where ¢, and the backward trajectory (r(t),k(¢)) are determined by (r, k).
Since fy, is defined only at the boundary 9D, a transformation is needed that leads
from a volume to a boundary integral. A phase space point (r,k) is bijectively mapped
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onto (k(¢y),11, = r(tp)) by the boundary time t,. (We consider the subspace of points
(K',r') having finite ¢,. Fortunately this is the relevant sub-domain for integral (69),
since in the complementary subspace the integrand vanishes.) This implies that the
transformation must replace one of the space integrals by a time integral. One can
formally augment (69) by a time integral [ d#'6(t' — ¢,) in the limits (0, —00). After a
rearrangement of the integrals (see [21]), (69) is transformed into

(70) (4) = 7€D dor(ry) /P dk, /0 " dto o (k)i (ro. k) x
‘ 'ﬁ(.)+ ‘
xmﬂ—/ Mm@xmm@pmﬁ@m%»
4

Here P is the part of the wave vector space with ky, vectors pointing towards the device
and |v | is the modulus of the velocity component normal to 8.
By replacing g with the iteration series (54), (A) may be expanded into the series

oo

(71) (A) = (b, (I = E)7 A) = (vifo, (1 = K) T A) = S (A).

i=0

The second term is reformulated to facilitate further analysis. The multipliers in each
term of the sum (b, (I — K)7'A) are formally regrouped. Now K is the repeating term
in the pattern, which is obtained from K after absorbing the exponent on the left and
releasing the exponent to the right for the next K. In this way A is assigned with the last
exponent to become A. The zero-order term (Ao = (VL o, A) is given by the right-hand
side of (70), with A(ry,(t0), ki (tn)) in place of g. The first term is

. , .00 . 00
(72) <A>L = dO‘(I‘b) / (1k|3/ dty / dk, / dt1|’UJ_(k|3)|fb(rb,kb) X
Jap Jry 0 . Jo
a2
xm{—/ Mm@ﬂm@ﬂ#%@d@ﬁmﬁdhﬁdkﬂx
Jo
oy
o | = [ il )] Aws (0K ()
Jo
Here the trajectory (r;(t

),
derived by augmenting (7
product

ki(t)) is initialized by (rn(fo),k1). The next term, (A)q, is
) with integrals on ko and to, and replacing A with 6T". The

(73) &:mﬂ—ﬂhmmxmmﬂmmmxmm

appears at the end of the expression for (A)s as an integrand on time ¢3. Higher-order
terms in (71) are derived by induction.
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The series expansion (71) is the key quantity in the treatment of the boundary value
problem. It proves that knowledge of the boundary distribution is sufficient to determine
arbitrary volume integrals defined by (55) and therefore to determine (A) uniquely. Only
the subspace Py of boundary states ky having an inward directed velocity component v
appear in (70), and thus they determine the boundary condition. The complementary
part is a priori unknown and comes out as a result of the transport process. The series
expansion (71) will be analyzed in terms of probability densities.

82. Analysis of (4). — The basic particle methods, used to date for simulation of
semiconductor devices, were originally devised by considerations where the simulation
was an emulation of the physical process: the transport picture has been used to establish
the corresponding stochastic method. The link between such physically based methods
and the numerical methods of Monte Carlo integration has been established later [22-27].
Here. we follow the opposite approach: the numerical Monte Carlo theory is used to
propose a common particle picture of the Wigner and Boltzmann transport processes.
As already discussed, the approach requires all integrals in (71) to be decomposed into
probability densities and random variables. An advantage is provided by the common
structure of these integrals, which are built by the boundary term b, the consecutive
applications of K and end up with the quantity A. Tt is then sufficient to extract from
each of these three quantities the proper probability densities. As these quantities appear
in (72), we focus on that equation.

82.1. Injection from the boundaries. The boundary term allows a simple probabilistic
interpretation. For the purpose of normalization, we introduce the integrals

(74) julr) = | Ao, ()] fulk.r), @zf J1(0)do(x),
P, aD

which represent the normal component of the incident particle current density and the
total incident particle current. Then the quantity

Ji(re) Jva (kp)|folrs, k)
o Ji(rs)

Po(th k)= = pp1(rp)Po2(rn, ki)

has the proper normalization of a conditional probability density. py, generates a phase
space point on the boundary by first selecting the position ry, proportional to the in-
cident particle current density. ky, is then selected according to the velocity-weighted
equilibrium distribution pps. In this way, the boundary term is factorized into a product
of p, with the normalization constant ®. The selection of the boundary point follows the

classical rules used in the device MC method and is thus associated with a particle that
is injected into the device.
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8'2.2. Probability factors in K. K is augmented by a multiplication and a division by
1, which gives rise to the product

K(x', K k1) = p(t,r',K)0p (r’(t))%%%)}{—llggt%z ’

p= K@) e | = [ k)],

The structure of the first term p; is well known from the classical MC method: it is the
probability for a drift without scattering provided that the scattering frequency is . The
normalization to unity is readily proven by integration over time with the limits (0, c0).
pe generates a value of ¢ associated with a free flight time of a particle which drifts over a
piece of a Newton trajectory between the initial state (r/, k') and (r'(¢),k'(¢)), and which,
as we will show, has a meaning of a before-scattering state. It is used as an input in the
conditional probabilities composing the remaining term I'(x'(¢), k' (¢), k)/p(r’(t), K (t)) to
generate the output value of k:

e’ k' k
(75) —/(Jf(r_’—,l;% = P (r',k’)ppl, (k',k) +})7(r',k') X
X (%p&, (r', kK — k) — %pﬁ,(r',k — k’) + %p{;(k - k’)) 3,
o1y = M) ey = )
P)\(r vk) - N(r/ k/) ’ p,},(r ’k) _ /,L(I"',k’) ’
/ S k) s k)
Pph (k k) )\(k/) ’ Pw (I‘ ’k) - ,-Y(rl) :

Here the time argument has been omitted, and py, = p% is introduced for convenience.
According to (61), py and p, are two complementary probabilities, which can be used
to select either pyy or the term in the brackets in (75). The first branch occurs with
the probability px, which selects the type of interaction to be scattering with phonons.
The application of the probability density ppy is readily understood as a generation of
the phonon after-scattering state (r',k). The second branch can be interpreted as a
generation of an after-scattering state due to interaction with the Wigner potential. It is
comprised of the three terms enclosed in the brackets. p» has been introduced with the
purpose to select which of the three densities p\}“v, py and ps generates an after-scattering
state (r/, k). In this way, the action of the Wigner potential is realized by a scattering
generated by either of these three probability densities. They will be discussed in detail
in the next section. Here, we conclude that the consecutive application of the conditional
probabilities, comprising K, generates a transition between (r', k') and (r'(t), k) which
is associated with a particle which undergoes a free flight followed by a scattering event.

What remains for the random variable associated with K is the term wlp = (£3)¢ i0p.
The power i depends on the type of the interaction: ¢ = 0 and w = 1 if the scattering
is due to phonons. If the Wigner potential is selected as a scattering source, 7 = 1 and
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w = (£3). where the minus sign applies if py, in (75) is selected. The quantity w is called
a weight factor. The domain indicator #p is unity if the particle is inside the device at
the end of the free flight and is zero otherwise. K factorizes into a product of the random
cariable and an evolution operator composed of conditional probability densities.

8'2.3. Recording averages. The integrand (73) can be written as follows:

:".i = pt(t, I, k)w‘)‘ .
pu(x(t), k(1))
The random variable ¢4 associated with the physical quantity A is the term A/p evalu-
ated at the end of the free flight. It must be noted that, as we are interested in physical
averages in a given region { inside the device domain, A contains implicitly the indicator
Bq of that region. If the end point of the free flight is outside 2, the random variable is
zero. Another way to express the random variable 14 can be obtained by integration by
parts of the t integral

(76) A=pit.r.K) /D dyAlr(y), k(y))-

The value of v 4 is identified as the path integral over y. Actually, due to the indicator fq,
only the part of the path belonging to §2 contributes to the integral. The two functionals
of 4 are known in the classical single-particle MC method as synchronous ensemble and
time integration techniques [28].

So far we are ready to state the stochastic approach for evaluation of (72). Numerical
trajectories are built up with the help of py, the conditional probabilities identified from
K and the probability p;. The random variable 9; = ®(+3)*)4 is calculated for each
trajectory. The sample mean (48) over N trajectories estimates (A);. A gencralization
for the n-th term in (71) is straightforward. Numerical trajectories are built up with
the help of p,, n consecutive iterations of the conditional probabilities identified from R’,
and the probability p;. The corresponding random variable %), is given by the product

(77) Un = 8 ]] b0, (£3)%0a = SWatoa,  Yay = D .

k=1

We first note that a given trajectory can be used to evaluate all terms with order lower
than n. Trajectories which leave the device domain after & iterations give zero contribu-
tion to the sample mean (48) for any term with n > k. Nevertheless, such trajectories
are counted as independent realizations in the denominator N of the sample mean. It
follows that a given trajectory can be used for evaluation of all terms in (71): a trajec-
tory which begins at a domain boundary and ends at a domain boundary becomes an

independent realization of the random variable 94y in (77). The sample mean over N
such trajectories estimates (A).
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Fig. 14. - Schematic evolution of the weight of Wigner particles in the scattering model.

9. — Particle models

9'1. Classical transport. — In the case of Boltzmann transport, the Wigner potential
completes the Liouville operator with a force term. The trajectories have the general
form (A.1). On the right-hand side of (56), only the two terms related to the phonons
remain. This allows to formally set v = 0, g = X in (61). The right-hand side of (75)
reduces to ppn. It is easily seen that the numerical trajectories coincide with the real
trajectories of the Boltzmann carriers evolving in the device. Indeed, the generation
of the initial point of the trajectory corresponds to an injection of a classical particle.
pr becomes the usual classical probability for the free-flight duration due to phonons.
The scattering is determined by the phonon scattering rate S through ppy, in (75). The
weight W,, in (77) remains unity for all n. The domain indicator takes into account only
the trajectories which are inside the device. Thus, numerical particles contribute to the
averages in the same way as Boltzmann carriers in the single-particle MC method. We
conclude that the resulting particle picture coincides with the picture of classical particles
that is emulated by the device MC method.

9'2. Coherent transport. — The coherent transport, which considers only events of
quantum interaction, is obtained by setting A = 0, g = ~ in (61). According to the
term in brackets in (75), these are scattering events which change the statistical weight
in (77). The scattering model (corresponding to the scattering interpretation of the
Wigner potential) leads to a weight evolution shown in fig. 14.

We examine the model as applied to a tunneling process. In the simulated experiment,
particles are injected between the two 1nm thin, 50meV high barriers of an unbiased
resonant-tunneling device (RTD). The injected particles are evenly distributed in the
middle 2nm part inside the 4nm wide potential well and have a Maxwell-Boltzmann
distribution in energy, the tail of which is truncated at 50 meV such that the injected
particles can overcome the barriers only by tunneling. Material parameters for GaAs
at 300 K temperature are assumed. Particles crossing the barriers can leave the device
through the left or right absorbing contacts.

The experiment is especially designed for comparison with a classical system. Under
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Fig. 15. — Device potential, current and particle density distribution in the device.

the assumed conditions, classical particles have a simple behavior which will be used as
a reference for evaluation of the QMC results. Classical particles cannot overcome the
barriers. The particle density would grow with time inside the well and no stationary
solution exists for this case. The current density outside the well would be zero because
no particles leave the well region. It would be zero also inside the well, due to the fact
that the injection region is centered in the well and that the reflection from the barrier
walls does not destroy the equilibrium distribution.

The QMC method provides the stationary solution which consistently characterizes
the quantum nature of the transport process. The electron density plotted in fig. 15
remains independent of the simulation time. The density remains constant in the region
of injection (middle part of the quantum well). It decreases outside the injection region
well before the physical location of the barriers, because of the non-local character of the
quantum potential. Indeed the potential out-scattering rate v is remarkably high around
the barriers on a distance determined by the coherence length L. = NAz. As shown
in fig. 16. . which is on the order of 107! 571, assumes even higher values outside the
barriers than inside.

The current density in fig. 15 clearly demonstrates the tunneling process. The density
is non-zero in contrast with the classical case. Particles tunneling through the left barrier
give rise to negative current, as opposite to those leaving through the right barrier.
Outside the injection region the current densities to the left and right contacts are space-
independent because of the current continuity.

A quantitative characterization of the tunneling process is given by the mean kinetic
energy, fig. 16. As proportional to the square of the wave vector, the kinetic energy
becomes negative in the barriers. This is the place where the wave vector of the tunneling
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Fig. 16. - Device potential, out-scattering rate v and kinetic energy distribution in the device.

particles transforms from a real to an imaginary quantity. The particles are injected in
the well with mean energy corresponding to the equilibrium value ~ 13meV for one
direction. Bach individual scattering by the quantum potential changes the energy of
the particle. In this experiment particles can gain energy well above 1eV. Despite the
fact that scattering occurs in the whole device, the equilibrium value is maintained in
the regions with zero potential energy.

These results show that the scattering model works and we can model tunneling by
using particles. The problem is that it works for the chosen energy and dimension scales
which are both one order of magnitude less than their counterparts in real nanoelectronic
devices. The problem comes from the rapid increase of the weight of the particles.
Consider (48) with Ey ~ 1 and ; ~ +10?Y (the accumulated weight). One needs N =~
10%" trajectories for a reliable estimate of Ey. One can estimate the mean accumulated
weight W from the mean time T a trajectory spends in the device. T is given by the
sum of all free-flight times. The number n of the scattering events is then n = Ty, and
W is estimated as

2 n 2 T T
W ==+(3)" = (1 + -%) = (1 + ——%—) ~ exp [27T].

It follows that the mean weight, and thus the variance, grows exponentially with the
magnitude of the Wigner potential and the dwell time T'. This result is in accordance with
the exponential growth with time of the variance of the MC approach to Feymmnan path
integrals [29]. If the device dimensions are larger than ten nanometers, T' is commonly
larger than a picosecond, while v 10495 s~ for a 0.3 eV potential barrier. This precludes
the application of the approach to mesoscopic devices.
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Fig. 17. — Schematic evolution of a Wigner particle in the weight-split model.

An alternative interpretation is needed in order to solve the problem with the ac-
cumulated weight. We explore the idea of particle splitting, which is an established
approach [30] for statistical enhancement in classical Monte Carlo simulations. A parti-
cle entering a rarely visited region of the phase space can be split into sub-particles, each
of which carries a fraction of the particle weight. This can be achieved by setting ps = 1
in (75). This modification changes entirely the interpretation of the quantum term. Now,
the state Q' = (r', k') which enters the interaction gives rise to three states, so that the
Wigner potential is understood as a generation term. After the interaction, the initial
particle survives in the same state, due to the delta-function in the brackets of (75).
Two additional particles are generated by p, in states QF = (v, k¥)(1). The trajectory
now branches so that the weight carried by any branch keeps a constant magnitude and
can change only the sign. It can be seen from (72) that the branching corresponds to
a splitting of the integral into three integrals. Hence each branch continues with a free
flight to contribute to the sample mean of ¢;. One of the contributions carries the minus
sign of py. It is beneficial to assign a sign to the particle associated to each trajectory.
Then the following transport process can be imagined. A positive particle is injected
from the device boundaries. It drifts over a trajectory (58) until the interaction time
generated according to p; is reached. The particle does not “feel” the Wigner potential
since after the interaction it remains in the same state. The next drift process continues
on the same trajectory. The action of the potential is realized through the creation of
two new particles in two phase space states. The particle related to p{,kv (pw) has the
same (the opposite) sign as the primary particle. The created particles follow the same
evolution process over their own trajectories. The schematic evolution of the particles in
the weight decomposition model is shown in fig. 17. After each individual interaction any

(*) We note that there are always two states generated: pT(r',0) = 0, since Viy is antisymmet-
ric.



WIGNER TRANSPORT IN THE PRESENCE OF PHONONS: ETC. 99

+f ‘—'}—"l +1

O —j'—'°—*
e =]

I: 1 +1

Fig. 18. - Schematic evolution of a Wigner particle interacting with phonons. The Wigner
potential in the right part of the figure is negligible, which marks a classical region. No generation
is presented. On the contrary, generation is very active in the middle part. The particle does
not feel the generation process so that the overall evolution is classical. The trajectory at the
bottom belongs to a generated particle. Tt evolves in the same way and carries the initial sign.

positive (negative) particle contributes to the estimator of Peay with +(=)®14. Two
particles which are in the same phase space point follow a common trajectory. If they
have opposite sign, they give opposite contributions to teay- Moreover such particles
create with the same probability for any point of the phase space particles with opposite
sign. The net contribution of such particles to the physical averages as well as to the
generation process is zero. It follows that particles with opposite sign which meet in the
phase space can be annihilated. The coherent transport is characterized by processes of
generation and annihilation of positive and negative particles.

9°3. Quantum transport with dissipation. — The above two limiting cases of the Wigner-
Boltzmann transport can be combined without interference into a general picture of
quantum transport with dissipation. The phonon interaction is inserted on top of the
coherent picture, and affects the dynamics of the particles. They no longer remain on a
single trajectory throughout the device, but are scattered to different trajectory segments
after each process of drift, as shown in fig. 18. According to (75), the events of phonon
and quantum interactions are complementary. The action of the Wigner potential on the
interacting particle is equivalent to a self-scattering event, since it does not change the
trajectory. From this analogy, it follows that the duration of the free flight on a given
trajectory depends only on A. The after-scattering state is selected by the phonon rate
S through pp,n. We conclude that particles have the same Boltzmann-like behavior in
both classical and quantum regions. The quantum character of the transport is marked
by the generation process and the sign of the particles. The possibility to annihilate
particles with opposite sign also remains true. The reason is that the evolution does not
change its Markovian character in the case of phonons. Particles at a given phase space
point still have a common probabilistic future and the considerations from the previous
section apply. A condition for this is that the phonons are treated in a classical way. If
the interaction is quantum, this property is not generally true because of the memory
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Fig. 19. - Total weight of the particles as a function of quantity proportional to the simula-

tion time.

character of the evolution. We note that other interpretations conserving the absolute
weight on a trajectory are possible. The interaction with the Wigner potential can be
chosen twice as rare on the expense that four particles are created per such event. A
reformulation of (75) can lead to events where quantum and phonon interactions occur
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Fig. 20. - Energy and density distribution in a resonant tunneling diode. The simulation domain
is large enough to include the classical regions of the device.
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Fig. 21. — Wigner potential out-scattering rate for two bias values.

in the same instances [31]. The proposed particle picture is the most straightforward one
which follows from this approach.

The decomposition of the weight greatly improves the performance of the Monte Carlo
approach. The particle annihilation precludes the variance from growing exponentially
by keeping the total particle weight in the device (now equal to the particle number
inside) under a reasonable limit. Figure 19 shows that the particle number inside the
device remains constant. The constant is much smaller than the total number of particles
injected from the boundaries reached at the end of the simulation.

Actual nanostructures can be now simulated. Figure 20 shows the energy and carrier
density distribution in a resonant tunneling diode. A seamless transition between the
classical and quantum domains exists despite the strong onset of the Wigner potential
shown in fig. 21. For a detailed considerations about the numerical aspects of the method,
see [3].

We conclude that the presented particle approach provides both a model which fa-
cilitates the understanding of the Wigner transport picture of and a useful tool for
quantum simulations.

Many of the results in these lecture notes are obtained in collaboration with IH.
Kosina, Technical University of Vienna, T. GUROV and [. Dimov, Bulgarian Academy
of Sciences, C. JACOBONI, University of Modena, and D. VASILESKA and D. K. FERRY,
Arizona State University.
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APPENDIX A.

The freedom of choice of the initialization time directly follows from the fact that the
wave vector k remains constant in time for an unaccelerated trajectory. Actually this
property is valid for a general Liouville operator with a force term Whi_ch does not depend
explicitly on time. A useful relation which follows from the stationarity assumed will be
derived.

A trajectory is initialized by a phase space point (k,r) and a time fo:

t
(A1) R{t;tg, 1. k) = r+/ v (K(y; ) dy,

to

K(t to. 1. k) =k + /tF (R(y; ) dy.

The order of to and t is irrelevant. A trajectory is called forward if the evolution time is
greater than the initialization time: ¢ > ¢5. Otherwise the trajectory is called backward.
The limits of the time integration in (A.1) can be exchanged by changing the sign of the
integrals. To describe a time-invariant system an absolute time scale is not needed. Only
the time difference between two consecutive events is important. Invariance under time
translation can be proven:

(A.2) R(t + 7;to + 7.1, k) = R(t; L0, 1, k),
K(t + 7to + 7,1, k) = K(t;to, 1, k).

This property will be used to adjust conveniently the time reference ty = 0 for each
trajectory. A shortcut notation, r(¢) = R(¢;0,r,k) and k(t) = K(t; 0, r, k), is introduced.
A particularly useful relation is obtained from (A.2):

(A.3) / dr dk /_ (;dtgb(r,k,r(t),k(t)): / dr' dK’ /0 "t (), K (1), ).

Here r(t), k(t) is a backward trajectory initialized by r, k, while r'(¢), k/(¢) is a forward
trajectory initialized by 1/, k/. The relation is proven by introducing new integration
variables ' = R(¢; 0,1, k), k' = K(£;0,r,k). Then

r=R(0;¢, 0, X) =R(-40,r' k),
k=K(0;t, v, K) =K(-t0,r k).

According to the Liouville theorem, the phase volume is invariant under this transfor-
mation: dr’ dk’ = drdk. The last step is to reverse the time by switching the sign of ¢
and to recall that R(t;0,r', k') and K(z;0,r', k') are forward trajectories initialized by
(r'.X') and denoted by r'(t), k'(¢). In particular, for a given function y it follows that

4] T
(A4) | ) )y = | n @R @)y
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