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Abstract

Source-to-drain current including tunneling in deca-nanometer double-gate MOSFETs is studied using a Monte Carlo approach
for the Wigner transport equation. This approach allows the effect of scattering to be included. The subband structure is calculated
by means of post-processing results from the device simulator MINIMOS-NT, and the contribution of the lowest subband is deter-
mined by the quantum transport simulation. Intersubband coupling elements are explicitly calculated and proven to be small in dou-
ble-gate MOSFETs. The simulation results clearly show an increasing tunneling component of the drain current with decreasing
gate length. For long gate length the semi-classical result is recovered.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Double-gate transistors are considered to be an
attractive option to improve the performance of logic de-
vices and overcome some of the difficulties encountered
in further downscaling of bulk MOS field-effect transis-
tors into the deca-nanometer regime [1]. When the chan-
nel length is reduced below approximately 25 nm,
quantum effects such as direct source-to-drain tunneling
through the barrier start affecting the device characteris-
tics [2]. Frequently, ballistic transport is assumed which
allows the device to be simulated using pure quantum-
mechanical approaches [3–5]. However, with carrier
mean free paths in the range of several nanometers [6],
scattering-limited transport may still be dominant. A
precise theory of ultra-scaled double-gate MOSFETs
(DGMOSFETs) must therefore properly account for
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an interplay between the quantum nature of carrier prop-
agation inside the channel and scattering processes. The
effect of scattering has been assessed using classical
Monte Carlo methods including a quantum correction
[7] or the scattering rates of the two-dimensional electron
gas [8]. The non-equilibrium Green�s functions (NEGF)
method [9] addresses the problem in the most consistent
and complete way. However, due to its computational
complexity, the method is frequently used in its reduced
coherent version, which is equivalent to the solution of
the Schrödinger equation with open boundary condi-
tions. Introduction of scattering into the method requires
the knowledge of the corresponding self-energies, which
complicates computations significantly, allowing a suc-
cessful solution only for some restricted class of model
scattering mechanisms [10]. Inelastic processes are usu-
ally taken into account phenomenologically by introduc-
ing a ‘‘Büttiker probe’’ [11].

An alternative approach is based on the Wigner func-
tion formalism. It incorporates quantum-mechanical
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Fig. 1. Sketch of the 25 nm gate length double-gate MOSFET
structure simulated by MINIMOS-NT. The contour plot shows the
potential profile of the conduction band in the channel at the drain–
source bias of 0.3 V and gate voltage 0.0 V.
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effects in terms of a quantum scattering operator [12].
An advantage of the Wigner function approach is that
it also includes all scattering mechanisms in a natural
way via the Boltzmann scattering integrals, allowing a
rigorous transport model to be developed, which
accounting for both quantum interference phenomena
and the scattering mechanisms.

It is essential that the Wigner equation formalism
treats the scattering and quantum-mechanical effects on
equal footing through the corresponding scattering inte-
grals. The remaining collision-free propagation of the
carriers is described by the Liouville operator acting on
the Wigner function and is similar to that of the Boltz-
mann equation. It prompts for a solution of the Wigner
equation with a Monte Carlo algorithm, by analogy to
the solution of the Boltzmann equation. Such programs
were recently realized in [12,13]. It was pointed out that,
because of the kernel of the quantum scattering operator
being not positively defined, the numerical weight of a
particle trajectory increases rapidly in absolute value,
and the numerical stability of a trajectory-based Monte
Carlo algorithm becomes a critical issue. A multiple tra-
jectories method was recently suggested [12] in order to
overcome the difficulty. In this algorithm the problem
of the scattering operator with the non-positive kernel
and growing statistical weight of a single trajectory is
rather addressed by creating a number of trajectories with
positive and negative weights. Being formally equivalent
to the former method, the later algorithm allows the anni-
hilation of trajectories with similar statistical properties,
which introduces a possibility to control the number of
trajectories and as a result to obtain convergent results.

An additional convergence improvement may be
achieved by an appropriate choice of a separation of
the total potential energy into a classical part and a
quantum-mechanical contribution. A substantial simu-
lation speed-up was reported [14] while choosing a
smooth classical component Vc(x) as an output of a
low-pass filter with the cut-off wave number qc �
2p/Dx, where Dx is the grid step.

A common approximation used in simulations of
DGMOSFETs is an adiabatic subband decomposition
method, where it is believed that the intersubband cou-
pling due to non-adiabatic effects should be small. A
good agreement between the results of simulations
found using the space-mode approach and the full-scale
simulations [4] indicates that the subband decomposi-
tion may be a good approximation. However, recent
studies have shown that even when the subband cou-
pling is expected to be strong, results of current char-
acteristic simulations using both of the foregoing
approaches coincide within 10% [15]. This suggests that
the coupling elements have to be evaluated in order to
decide on their actual importance.

In this paper, we report on explicit evaluation of the
subband coupling elements in DGMOSFETs, under
non-equilibrium conditions when source–drain bias is
applied. The potential in the structure is calculated
self-consistently as an output of the MINIMOS-NT simula-
tor [16]. It is shown that in ultra-scaled DGMOSFETs
the coupling terms are few orders of magnitude smaller
than the thermal energy and/or intersubband splitting,
and the subband decomposition turns out to be an excel-
lent approximation. Examples of Wigner function-based
Monte Carlo simulations of the source–drain current
including tunneling are presented in Section 3.
2. Effective Hamiltonian and transport model

The DGMOSFET is schematically shown in Fig. 1. An
undoped h100i Si semi-conductor channel of thickness t
is connected to the heavily doped source and drain con-
tacts, with the dopant concentration set to 5 · 1019

cm�3. The doping profile is chosen to be abrupt. Metal
gates of lengthLwith midgap work function are assumed.
Gate electrodes are separated from the channel by thin
layers of silicon dioxide, which in this study was chosen
to be 1 nm in order to avoid appearance of an extra
parameter. In the simulations the gate length L varies
from 10 to 60 nm. The silicon film thickness t is in the
range between 3 and 20 nm. The system is assumed to
be infinite in z direction, such that the transversal motion
in z direction is described by the conserved transversal
momentum pz and may be separated.

Due to the small silicon body thickness, the transver-
sal carrier motion in y direction is quantized. The
electron spectrum is split into well defined two-
dimensional subbands. Each subband is characterized
by the transversal wave function wn(y,x). We define
the wave functions from the effective mass equation:



Fig. 2. Profile of the lowest subband wave function determined by (1).
The parameters are the same as in Fig. 1.
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where U(y,x) is the self-consistent potential energy in
the channel, and my is the effective mass in y direction.
Note that due to the dependence of the longitudinal
coordinate x still present in the potential profile
U(y,x), the eigenfunctions wn(y,x) and eigenenergies
EnðxÞ depend on x. Because of this dependence the sub-
bands defined by wn(y,x) are not completely separable.
However, in case of the DGMOSFET shown in Fig. 1,
when mainly the silicon film boundaries determine the
subband quantization, the subband coupling elements
are expected to be small.

To rigorously evaluate the importance of subband
coupling, we expand the full wave function W(x,y) using
the complete set of subband functions wn(y,x) as

Wðx; yÞ ¼
X
n

nnðxÞwnðy; xÞ; ð2Þ

where coefficients nn(x) describe the longitudinal motion
in transport direction within the nth subband.

It can be shown that the wave functions nn(x) satisfy
the following system of coupled equations:
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with open boundary conditions.
The intersubband coupling Hamiltonian is found to

be
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where the coefficients Snm(x) and Dnm(x) are defined as
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Because wn(y,x) are normalized, the coefficients satisfy
the following relations:
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It then follows that the diagonal terms Dnn are positively
defined whereas Snn = 0 identically. With help of (7) and
(8) one can also show that the matrix elements of the
intersubband coupling Hamiltonian dHnm(x) possess
the Hermitian property:
cmn 

Z

dxn�
nðxÞdHnmðxÞnmðxÞ ¼ ðcnmÞ

�. ð9Þ

The potential profile inside the channel of DGMOS-
FETs calculated self-consistently for a drain–source
voltage of 0.3 V and a gate bias of 0 V with help of MIN-

IMOS-NT simulator is shown in Fig. 1. We have chosen
this option of the potential calculation in the channel,
in contrast to a self-consistent solution of the corre-
sponding Poisson and Schrödinger equations, in order
to account for strong dissipative processes due to elec-
tron–phonon scattering, which affect strongly the elec-
tron density and the potential profile in transport
direction. To reproduce the carrier profile in the direc-
tion transversal to current correctly, we use MINIMOS-
NT with a quantum correction potential introduced,
which accounts for a proper electron density behavior
at the channel boundaries. To be fully consistent with
the Wigner Monte Carlo method, a self-consistent loop
with the Wigner solver should be eventually imple-
mented. This, however, imposes a major additional
computational effort and goes beyond the scope of the
current work.

The equipotential lines develop high curvatures at the
drain end of the channel between the gates. It signifies a
stronger dependence of the channel potential U(y,x) on
the longitudinal coordinate x and, as a consequence, a
more pronounced dependence of subband wave func-
tions (1) on x. The contour plot of the lowest subband
function calculated for the same parameters as in
Fig. 1 is shown in Fig. 2. As expected, the strong x

dependence of the wave function is found in the same
channel region where the channel potential U(y,x)
strongly changes with x.

The elements Dnm(x) and Snm(x) of the coupling
Hamiltonian are shown in Figs. 3–5, for several values
of silicon thicknesses t and gate length L. As expected,
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Fig. 3. Diagonal part D11(x) of the perturbation Hamiltonian calcu-
lated for gate length L = 25 nm, for two values of silicon body
thickness. With the silicon thickness decreased, the diagonal part
decreases rapidly.
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Fig. 4. Off-diagonal part D12(x) of the coupling Hamiltonian calcu-
lated for gate length L = 25 nm, for two values of the silicon body
thickness t. The coupling increases slightly as the thickness is
decreased. Inset: off-diagonal term S12(x), normalized to the thermal
length k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxkBT

p
=�h, for two values of body thickness.
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Fig. 5. Diagonal part of D11(x) of the perturbation Hamiltonian
calculated for silicon body thickness t = 5 nm, for three different gate
lengths. The dashed-dotted line shows the left edge and dotted lines the
right edge of the gates, respectively.
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Fig. 6. Potential profile of three lowest subbands EnðxÞ in L = 25 nm
and t = 5 nm MOSFET. Only the lowest subband is substantially
occupied with the carriers and thus participates in transport.
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all the coupling elements are substantially different from
zero in the narrow channel segment where the channel
potential and the transversal wave functions possess
the strong longitudinal coordinate dependence.

Diagonal and off-diagonal coupling elements show
quite a different behavior as a function of silicon body
thickness t. The diagonal contribution Dnn(x) is rapidly
decreasing when the thickness of the silicon film shrinks
(Fig. 3). Both contributions Snm and Dnm to the off-diag-
onal part show an opposite tendency to grow slightly
when the body thickness is reduced (Fig. 4 and inset).
For fixed silicon film thickness, as the gate length L is
decreased, the diagonal and off-diagonal contributions
show similar dependence to increase. However, as one
can see from Fig. 5, the L dependence of Dnn is quite
weak, since the absolute increase is only about 15%
when the channel length is reduced from 50 to 15 nm.

The first two subband profiles ELiðxÞ; i ¼ 1; 2 with
the transversal mass my = 0.91m0, where m0 the free
electron mass, and the first subband profile ET1ðxÞ with
my = 0.19m0, are shown in Fig. 6. As can be seen from
Fig. 4, the absolute value of the off-diagonal coupling
elements Dnm(x) and Snm(x)/k, where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxkBT

p
=�h

is the thermal length, is of the order of 10�2 meV and
is extremely small compared to other characteristic
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energies such as kBT or subband quantization energy
(Fig. 6). It is thus justified to neglect the off-diagonal
coupling dHnm(x) for the DGMOSFETs under consider-
ation. If the coupling dHnm(x) is neglected, Eq. (3) coin-
cides with the standard one-dimensional Schrödinger
equation with the potential energy V(x) equal to:

V ðxÞ ¼ EnðxÞ þ DnnðxÞ. ð10Þ
Introducing the Wigner function fn(x,p, t) for each sub-
band n and following the procedure outlined in [12],
we obtain the one-dimensional Wigner equation for
fn(x,p, t). The potential operator of the one-dimensional
Wigner equation is given by the usual convolution inte-
gral [14], where the potential energy of electrons V(x) is
defined by (10).

Following [14], we introduce a spectral decomposi-
tion of the potential profile V(x) into a slowly varying,
classical component and a rapidly varying, quantum-
mechanical component:

V ðxÞ ¼ V clðxÞ þ V qmðxÞ. ð11Þ
This decomposition is conveniently carried out by
applying a low-pass filter with a cut-off wave number
qc � p/Dx, where Dx is a grid step size. An example of
such a decomposition is shown in Fig. 7. This separation
of the total potential into classical and quantum-
mechanical contribution improves significantly the
Wigner Monte Carlo convergence. Electron–phonon
scattering is taken into account through the conven-
tional Boltzmann collision operator. Finally, for the
DGMOSFETs under consideration, only the lowest
subband was taken into account for Wigner transport
calculations. This approximation is properly justified
only for silicon thicknesses less than 5 nm. For thicker
silicon bodies the higher subbands are getting increas-
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Fig. 7. Potential decomposition of the subband potential into a
classical part Vcl(x) and a quantum-mechanical part Vqm(x) for the
10 nm gate length device.
ingly populated so that the lowest subband approxima-
tion may provide only with qualitative understanding of
the importance of coherent effects as compared to the
classical simulations.
3. Results and discussion

The Wigner Monte Carlo simulations were carried
for DGMOSFETs with gate lengths of 60, 25, 15, and
10 nm. The gate voltage was set to 1.0 V. The simulation
domain was split into the quantum region which in-
cluded the channel sandwiched between two classically
treated parts in source and drain regions. The Wigner-
type scattering due to the quantum potential leads to
the generation of states with positive and negative statis-
tical weights as explained elsewhere [12]. In order to en-
hance the efficiency of simulations in the quantum
region and ultimately avoid situations when the conver-
gence may not be achieved due to an insufficient number
of negative weights necessary to treat correctly the Wig-
ner function in the quantum region, trajectories with po-
sitive and negative weights were already generated in
classical contacts with a predefined fixed ratio. The sta-
tistical compensation of positive and negative weights
does not affect the expected value of estimators calcu-
lated in classical contacts and only leads to an increase
of their variances. The trade-off for this algorithm is of
course the CPU time, which grows proportionally to
the number of trajectories used.

The profile of the two-dimensional carrier density
along the channel and the typical output characteristics
of DGMOSFETs are shown in Figs. 8 and 9, respec-
tively. Results of the purely classical simulations when
the Wigner-type quantum scattering was turned off are
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Fig. 8. The carrier concentrations in 10, 25 and 60 nm gate length
device at 0.6 V drain bias for the classical and the Wigner Monte Carlo
simulations.
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also shown in both figures. For the gate length of 60 nm
the classical density is identical to the one calculated
with the quantum scattering included through the whole
device. The difference starts to grow when the gate
length decreased, with its maximum relative value ac-
quired in the quantum region under the gate. For the
gate length of 10 nm the actual density is already two
times greater than the one found classically. This addi-
tional carrier concentration is of a quantum-mechanical
nature and is created by the carriers, which are able to
tunnel through the potential barrier created by the gates.
The probability to find these carriers under the barrier in
the channel is non-zero what leads to an additional
quantum-mechanical contribution to the density.

Similar dependencies are observed for the drain-
to-source current density in Fig. 9. For the long gate
length the current found with help of the Wigner Monte
Carlo method coincides with the thermo-ionic current
computed classically within the statistical uncertainty
represented by the symbol size. With the gate length de-
creased, the quantum current develops a significant in-
crease as compared to the thermo-ionic classical
contribution. The relative increase reaches already 50%
for the gate length of 10 nm.

The current increase is also determined by its quan-
tum-mechanical component, which is caused by the car-
riers being able to tunnel through the barrier. The
potential barrier transmission coefficient grows rapidly
with the gate length decreased, which explains the signif-
icant current increase over its classical contribution for
the shorter gate length, in a complete analogy with the
purely coherent case. The most important advantage
of the Wigner Monte Carlo method over the latter one
is that it allows to calculate the quantum-mechanical
current and density contribution when dissipative pro-
cesses caused by inelastic scattering are included.
4. Conclusions

The Wigner Monte Carlo method allows a direct
comparison of semi-classical and quantum transport re-
sults. The method is used to account for the tunneling
current in ultra-scaled double-gate MOSFETs. The sub-
band decomposition method is applied. Intersubband
coupling elements are explicitly computed and are
shown to be small in DGMOSFETs. Devices of different
gate lengths have been studied. Electron–phonon scat-
tering processes are included via the corresponding scat-
tering term. The Wigner calculations reproduce the
semi-classical results for the long channel device and
predict a significant source-to-drain tunneling compo-
nent in the drain current at very short gate lengths.
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