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Abstract. The ultrafast evolution of optically excited carriers which
propagate in a quantum wire and interact with three dimensional
phonons is investigated. The equation, relevant to this physical problem,
is derived by a first principle approach. The electron-phonon interaction
is described on a quantum-kinetic level by the Levinson equation, but
the evolution problem becomes inhomogeneous due to the spatial depen-
dence of the initial condition. The initial carrier distribution is assumed
Gaussian both in energy and space coordinates, an electric field can be
applied along the wire. A stochastic method, described in Part II of the
work, is used for solving the equation. The obtained simulation results
characterize the space and energy dependence of the evolution in the zero
field case. Quantum effects introduced by the early time electron-phonon
interaction are analyzed.

1 The Coupled Electron-Phonon System

We consider a system of electrons which interact with the lattice vibrations. The
electric forces which accelerate the electrons are due to the structure potential
and the applied bias, Coulomb interaction between the electrons is neglected.
The description of the system is provided by both the electron and the phonon
degrees of freedom. We derive the Wigner equation for the coupled electron-
phonon system. The corresponding Hamiltonian is given by the free electron
part Hy, the structure potential V' (r), the free-phonon Hamiltonian H,,, and the
electron-phonon interaction He_j:

H=Hy+V+H,+H, =

I
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Here bil and bq are the creation and annihilation operators for the phonon mode
q, wq 1s the energy of that mode, and F(q) is the electron-phonon coupling
element, which depends on the type of phonon scattering analyzed. The state of
the phonon subsystem is presented by the set {nq} where nq is the occupation
number of the phonons in mode q. The representation of the basis set is provided
by the vectors [{nq},r) = |{ng})|r).

The considered structure is a quantum wire, formed by potential barriers
which confine the electron system in the plane normal to the wire. In this plane,
at low temperatures, the system occupies the ground state ¥. A homogeneous
electric field ' can be applied along the direction of the wire z. It holds:

Ho+V(r)=H,+H,=Ho +Vi +Hp.+V(2); H\V=FV,

V(z) = —eEz and |r) = |r1)|#). The generalized electron-phonon Wigner func-
tion is defined by the Fourier transform of the density operator p:

/
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The evolution problem is separated with respect to the normal and z coordinates
as follows:

p=0)Wlpez; (v {ng}lpel{ng},x') = (' ) (r)p(z, 2" {nq} {ng}, 1)

Assuming that ¥ is normalized to unity it is obtained:

1 dz' —ip,z'/h 7 4 ’
fw(zapzu{nq}a{nq}ﬂt) = 27The p(2+ 2 2 27{nq}7{nq}vt)
The equation of motion of f,, is obtained from the von-Neumann equation for
the density matrix:

8fw<zvp27 {nq}v {n;}v t)

/
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The right hand side, evaluated for each term of the Hamiltonian () gives rise to
the generalized Wigner equation for the confined electron system. The equation
couples an element f,(...,{n},{m},t) to four neighborhood elements for any
phonon mode q. For any such mode nq can be any integer between 0 and infinity
and a sum over q’ couples all modes. Of interest is the reduced or electron Wigner
function defined as the trace over the phonon coordinates:

fw<zvpzat) = Z fw(zvpzﬂ {nq}a {nq}vt)
{nq}

A closed equation for the reduced Wigner function is obtained by a set of assump-
tions and approximations: A diagonal element is linked to elements, called first
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off-diagonal elements, which are diagonal in all modes but the current mode q’ of
the summation. In this mode the four neighbors of ng/, ngs namely ng £1, ng- and
Ng’, Mg £1 are concerned. For convenience we denote the phonon state, obtained
from {nq} by increasing or decreasing the phonons in mode q’ by unity as {nq}j.
The first off-diagonal elements are linked to elements which in general are placed
further away from the diagonal ones by increasing or decreasing the phonon num-
ber in a second mode, ", by unity. These are the second off-diagonal elements.
The only exception is provided by two contributions which recover diagonal ele-
ments. They are obtained from ({{nq}zl',}o_l,,7 {nq}) and ({nq}jl',, {nq}jl',,) in the
case when the two phonon modes coincide: @' = q”. The first approximation is
to keep only such terms in the equations for the first off-diagonal terms. Then
the equations for the diagonal and the four first off-diagonal terms form a closed
system. Furthermore, the four first off-diagonal equations can be solved and
substituted in the diagonal one. The obtained equation contains only diagonal
terms such as fy, (2, pz, {nq}, {nq},t) and fu,(z,p:, {nq}(';c,7 {nq}§,7t). The next
major assumption is that the phonon system remains in equilibrium during the
evolution. This allows to take the trace on the phonon coordinates and to ob-
tain an equation for the reduced Wigner function f,(z,p.,t). After few steps of
transformations, which include the settings

|4
Z = (27T)3 /dq/; k., :pz/h; klz =k, - q-
q/

and a conversion to an integral form, the equation reads:

F(z k) :f(z(O),kz(O),0)+/0tdt’/ot/ dt"/dq;/dk; « @)
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+ n(d)cos ( / ar (eaczm) — e(K(7) - hw))]

Equation[2generalizes the Levinson equation [I] for the case of a space dependent
initial condition. The Newton trajectories, initialized at z, k., t, are governed by
the electric force F":

SR kst " ) = |G F (AL ke — KL x

1/t E
2(t") =2~ / p-(7)dT; k.(t") =k, — F(t—t"); F="° (3)
mJn h
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The shape of the wire affects the electron-phonon coupling through the factor G:

G(d)) = / dr T (r )2

2 Phase Space Transform

The equation reveals a very inconvenient from a numerical point of view property,
namely that a solution for a phase space point (z,k.) at ¢ is linked with the
solutions on the trajectories ([B). Thus the simulation domain grows with the
force F' and the evolution time ¢ in both position and wave vector subspaces.
The following transform (k.1 = k., k.) is suggested to cope with this problem:

Ko =ka—Ft ka(r) = Ky +Fri f(zkat) = f(z, K4+ Ft ) < f(z, k1)
The following equalities can be easily shown:

Fz k. (t), 1) = flz, k. + Ft" ") = f'(z, kL, t")

2m

t
2(t) =2 — <th + hE (t +t”)) (t—1t")
m
and ¢, =k, — k., = k! — k..

2h?

F.q.
om 14T

e(K. (7)) — e(k:(7)) = e(kY) — e(k2) —

All terms in the equation are now expressed as functions of k%, kf. By omitting
the superscripts of the arguments it is obtained:

m
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3 Simulation Results and Discussions

We first consider the numerical properties of (). The integration is in the wave
vector space, while the real space variable enters as a parameter modified by the
two time integrals. The advantage of ) as compared to (2) is that the wave
vector variable is decoupled from the time variable and thus the integration
domain can be maintained independent of the force and the evolution time.
Despite that the numerical challenges posed by (@) are heavy already in the
homogeneous problem [2]. In the latter case one of the time integrals can be
assigned to S. Furthermore another integration in the wave vector space can be
spared due to symmetry considerations. In the inhomogeneous problem it is no
more possible to assign the time integral to S due to the ¢’ dependence of f in the
right hand side of (). The physical origin of this dependence is associated with
the finite duration of the electron-phonon interaction: the real space trajectory
is modified by the half of the phonon wave vector ¢, times the duration ¢’ — ¢
of the interaction. Thus in the general case each iteration step increases the
dimensionality by five more integrals and thus the computational burden.

The equation accounts for interesting quantum effects demonstrated by the
presented simulation results. Considered is a GaAs material with a single polar
optical phonon having a constant energy fiw. The electric field is zero. The initial
condition is a product of two Gaussian distributions of the energy and space.
The k2 distribution corresponds to a generating laser pulse with an excess energy
of about 150meV. The z distribution is centered around zero. A quantum wire
with a rectangular cross section is assumed. At very low temperature the physical
system has a transparent semiclassical behavior. We recall the major results of
the homogeneous case [2]. Semiclassical electrons can only emit phonons and
loose energy equal to a multiple of the phonon energy fw. They evolve according
to an energy distribution, patterned by replicas of the initial condition shifted
towards low energies. Such electrons cannot appear in the region above the
initial distribution. The quantum solutions demonstrate two effects of deviation
from the semiclassical behavior. The replicas are broadened and the broadening
reduces with the time. A finite density of electrons appears in the semi-classically
forbidden region above the initial condition. These effects are due to the lack of
the energy conserving delta function, which is build up by the cosine function in
S for long evolution times.

In the inhomogeneous case the wave vector (and respectively the energy) and
the density distributions are given by the integrals

Flhat) = / G ekt net) = / W= p ant)
2w 27
Figure 1 shows the redistribution of the initial electrons after 50 femtoseconds
evolution time as a function of the proportional to the energy quantity k2. A
window of values for k2 and f is chosen, where the broadening of first replica
and the finite density of electrons with energies above the initial condition is well
visible. Figure 2 shows the distribution in the whole simulation domain after 150
femtoseconds evolution. The first replica becomes sharper, but still broadened
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Fig. 1. Initial condition and energy distribution at 50fs evolution time

800 T T i T T T T T T T

i k*f(kt),it=150fs
i i1 initial --------
700 - 0 1 1

600 | :
500 | .

400 | .

K*f(k,t) [a.u.]

300 | .
200 | ]

100 - ‘ f {

-05 -04 -03 -02 -01 0 0.1 02 03 04 05
k*mod(k) [1/nm"2]

Fig. 2. Initial condition and energy distribution at 150fs evolution time

with respect to the initial condition. Also the place of the second replica can
be recognized. In the absence of electric field there is a symmetry in the k, di-
rections. The behavior is analogous to the homogeneous case despite that the
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Fig. 3. Electron density after 50fs evolution time
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coupling constant is now modified by G. Figure 3 compares the electron density
with (n) and without (ballistic) electron-phonon interaction for 50 femtoseconds
evolution time. The initial peak at the origin splits into two symmetric distri-
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butions which evolve to the left and right respectively. In the central part the
n curve is much higher than the ballistic curve due to the electrons which are
slowed down by the phonons. The external fronts of the two curves coincide
and hence are formed by the fastest electrons in the initial condition. The third
curve is the shifted to the left half of the initial condition. It shows that at such
small evolution time the real space broadening is practically zero. The same
quantities ( the half initial condition shifted to the right) are compared for 150
femtoseconds evolution time in Fig. 4. A window in the position is chosen for a
better resolution. The broadening of the ballistic curve already becomes sensi-
ble. It shows the largest distance away from the origin which classical electrons
can attain. The most interesting effect is demonstrated by the n curve: there
is an excess electron density below approximately four orders of magnitude of
the peak value. Such electrons penetrate in the semi-classically forbidden spa-
tial zone. This purely quantum effect is due to the electrons, which occupy the
energy region above the initial energy distribution. This effect has been recently
observed in the solutions of a density matrix model of the zero field physical
problem [3].

A Wigner equation for the evolution of spatially inhomogeneous electron dis-
tribution excited by a laser pulse in a quantum wire has been derived and solved
by a Monte Carlo approach. A transformation is proposed which fixes the prob-
lem with the spreading integration domain in presence of electric field. It is
shown that the quantum character of the electron-phonon interaction causes at
low temperatures a speed-up effect on the electron front evolving in the wire.
The proposed approach is suitable for exploration of the influence of the field
on this effect. The numerical burden increases with the increase of the evolution
time and requires large scale computational solutions such as parallel and GRID
technologies.
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