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Abstract. Carbon nanotube field-effect transistors have been studied
in recent years as a potential alternative to CMOS devices, because of
the capability of ballistic transport. In order to account for the ballistic
transport we solved the coupled Poisson and Schrödinger equations for
the analysis of these devices. Conventionally the coupled Schrödinger-
Poisson equation is solved iteratively with appropriate numerical damp-
ing. Often convergence problems occur. In this work we show that this
problem is due to inappropriate energy discretization, and by using an
adaptive integration method the simulation time is reduced and most of
the simulations converge in a few iterations. Based on this approach we
investigated the static and dynamic behavior of carbon nanotube field
effect transistors.

1 Introduction

Exceptional electronic and mechanical properties together with nanoscale di-
ameter make carbon nanotubes (CNTs) a candidate for nanoscale field effect
transistors (FETs). While early devices have shown poor device characteristics,
high performance devices were achieved recently [17, 11, 5, 7, 14]. In short devices
(less than 100 nm) carrier transport through the device is nearly ballistic [5, 6].
As described in the next section the coupled Poisson and Schrödinger equation
system was solved to study the static response of CNTFETs. We show that by
using an adaptive integration method for calculating carrier concentration and
current density, simulations converge very fast while the results are very accu-
rate. Based on the Quasi Static Approximation (QSA) the dynamic response of
these devices is also investigated.

The contact between metal and CNT can be of Ohmic [6] or Schottky type
[1]. In this work we focus on Ohmic contact CNTFETs which theoretically [4]
and experimentally [5] show better performance than Schottky contact devices.
In a p-type device with ohmic contacts holes see no barrier while the barrier
height for electrons is Eg. By changing the gate voltage the transmission coeffi-
cient of holes through the device is modulated and as a result the total current
changes [6].
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2 Approach

In this section the models which were used to study the static and dynamic
response of CNTFETs are explained. As it will be shown in the next section a
good agreement between simulation and experimental results is achieved.

2.1 Static Response

In order to account for the ballistic transport we solved the coupled Poisson and
Schrödinger equations for CNTFETs.
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We considered an azimuthal symmetric structure, in which the gate surrounds
the CNT, such that the Poisson equation (1) is restricted to two-dimensions.
In (1) V (ρ, z) is the electrostatic potential, and Q is the space charge density.

In the Schrödinger equation (2) the effective mass is assumed to be m∗ =
0.05m0 for both electrons and holes [19]. In (2) superscripts denote the type of
the carriers. Subscripts denote the contacts, where s stands for the source contact
and d for the drain contact. For example, Ψn

s is the wave function associated with
electrons that have been injected from the source contact, and Un is the potential
energy that is seen by electrons. The Schrödinger equation is just solved on the
surface of the tube, and is restricted to one-dimension because of azimuthal
symmetry.

The space charge density in (1) is calculated as:

Q =
q(p − n)δ(ρ − ρcnt)

2πρ
(3)

where q is the electron charge, and n and p are total electron and hole con-
centrations per unit length. In (3) δ/ρ is the Dirac delta function in cylindrical
coordinates, implying that carriers were taken into account by means of a sheet
charge distributed uniformly over the surface of the CNT [8].

Including the source and drain injection components, the total electron con-
centration in the CNT is calculated as:
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where fs,d are equilibrium Fermi functions at the source and drain contacts.
All our calculations assume a CNT with 0.5 eV band gap [5]. The total hole
concentration in the CNT is calculated analogously.
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The Landauer-Büttiker formula [3] is used for calculating the current:

In,p =
4q
h

∫
[fn,p

s (E) − fn,p
d (E)]T n,p

c (E)dE (5)

where T n,p
c (E) are the transmission coefficients of electrons and holes, respec-

tively, through the device. The factor 4 in (4) and (5) stems from the twofold
band and twofold spin degeneracy.

Conventionally the coupled Schrödinger and Poisson equations are solved iter-
atively [20], by using an appropriate numerical damping factor α. At the (k+1)th

iteration the Schrödinger equation is solved using the electrostatic potential V k

from the last iteration and the new space charge density Qk+1 is calculated.
The Poisson equation is then solved by using Qk+1 and an intermediate new
electrostatic potential is calculated V k+1

int . Finally V k+1 is calculated as:

V k+1 = αV k+1
int + (1 − α)V k (6)

where 0 < α < 1. Successive iteration continues until a convergence criterion is
satisfied. In this work an adaptive damping factor was used [10]. The damping
factor is initially set to α = 1. If the potential update |V k+1 − V k| increases
from one iteration to the next iteration or remains constant the damping factor
decreases by a constant factor. We used α = α × 0.8 as suggested by [10]. If
a high damping factor is initially selected the simulations may oscillate and
will not converge. Using a low damping factor will result in long simulation
time. We show that by appropriate evaluation of the carrier concentration this
problem can be avoided. The integration in (4) and (5) are calculated in an
energy interval [Emin, Emax]. In the simplest way the interval is divided into
equidistant steps. By using this method narrow resonances at some energies
may be missed or may not be evaluated correctly. In successive iterations as
the potential profile changes the position of the resonances will also change,
and it is possible that a resonance point locates very near to one of the energy
steps. In this case the carrier concentration suddenly changes and as a result the
simulation would oscillate and not converge. To avoid this problem the accuracy
of the integration should be independent of the location of resonances. By using
an adaptive integration method the integrations in (4) and (5) can be evaluated
with a desirable accuracy. Assume f is an integrable function, and [a, b] is the
interval of integration. To compute

I =
∫ b

a

f(x)dx (7)

adaptively I is calculated with two different integration methods, I1 and I2. If the
relative difference of the two approximations is less than a predefined tolerance
the integration is accepted, otherwise the interval [a,b] is divided into two equal
parts [a, c] and [c, b], where c = (a + b)/2, and the two respective integrals are
computed independently.
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Fig. 1. The comparison of CPU time demand on an IBM-RS6000 for the same iterative
simulation, but with different integration methods. The norm of the potential update
is considered as a measure of convergence. a) Shows the results for adaptive and non
adaptive integration. b) Show the result for adaptive integration with and without the
derivative of carrier concentration with respect to the electrostatic potential.

I =
∫ c

a

f(x)dx +
∫ b

c

f(x)dx (8)

The same procedure is performed for each of these integrals. The advantage of
this methods is that the steps are non-equidistant, so there are many points
around the resonances while in other regions there are few points. In this work
an adaptive Simpson quadrature [15] is used. In this method the two successive
Simpson approximates are calculated:

I1 =
h

6
(f(a) + 4f(c) + f(b)) (9)

I2 =
h

12
(f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)) (10)

whered = (a+c)/2, and e = (c+b)/2. If |I1−I2| ≤ tol×|I2| the integration is evalu-
atedwithinone stepofRomberg extrapolation: I = I2+(I2−I1)/15 .Fig. 1-a shows
the CPU time demand on an IBM-RS6000 for the same iterative simulation using
adaptive integration and non-adaptive integration with 5 × 104 and 105 points.
Increasing the number of data points in the non adaptive method the simulation
becomes more stable. Using adaptive integration method, only 9 × 102 points are
required and most of the simulations can start with a high damping factor (α = 1)
and no or few oscillations occur. Therefore a high damping factor is used for all the
iterations and as a result simulations converge very fast. It is also possible to make
the simulations more stable by providing the derivate of carrier concentration with
respect to the electrostatic potential for the Poisson solver [12, 2]. In general there
is no exact form for this term, but ∂n/∂φ ≈ q ∂n/∂EF can be considered as a good
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approximation [12]. As shown in Fig. 1-b by including the derivate of carrier con-
centration with respect to the electrostatic potential, the stability of simulations
increases and the simulation time decreases.

2.2 Dynamic Response

To study the dynamic behavior of CNTFETs, the QSA was used. Generally
in this method device capacitances are given by the derivatives of the various
charges with respect to the terminal voltages:

Cij = χij
∂Qi

∂Vj

∣∣∣∣∣
Vk �=j=0

(11)

where the indices i, j, k represent terminals (gate, source or drain), and χij = −1
for i �= j and χij = +1 for i = j. The differentiation of these expressions is
performed numerically over steady state charges [18]. This method is widely used
for the analysis of conventional semiconductor devices, where the charge in the
semiconductor device is partitioned into two parts indicating the contribution of
the source and drain contacts [18, 13]. For example, the gate-source capacitance
is calculated by

Csg =
∂Qse

∂Vgs
+

∂Qst

∂Vgs
= Cse + Csq (12)

where Qse is total charge on the source contact and Qst is the total charge on the
tube injected from the source contact. As shown in (12) the total gate-source ca-
pacitance is split into two components, the first term indicates the electrostatic
gate-source capacitance and the second term is usually referred to as quantum ca-
pacitance [9].Therefore the capacitancematrix has a rank of 3, anddue to quantum
capacitances the matrix is not symmetric (Cij �= Cji). In this work we assumed
that only the gate voltage changes, whereas the voltages of the other terminals are
kept constant. Therefore, the capacitance matrix simplifies to three components,
and an equivalent circuit as shown in Fig. 2 is achieved [16]. In Fig. 2, gm is the dif-
ferential transconductance calculated by gm = ∂Ids/∂Vgs Based on the equivalent
circuit in Fig. 2, the cutoff frequency of the device can be derived as

fT =
gm

2πCsg

√
1 + 2Cdg

Csg

(13)

Gate

Source Drain

dgCCsg

g   vm  gs

Fig. 2. Simplified equivalent circuit model for the dynamic response of CNTFETs. The
model is based on the assumption that only the gate voltage changes.
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3 Simulation Results

We consider a p-type ohmic device, where holes see no barrier while the barrier
height for electrons is Eg. For a fair comparison with experimental results, we
used the same material and geometrical parameters as reported in [5]. As shown
in Fig. 3, there is a good agreement between simulation and experimental results
despite the fact that the cylindrical structure is only an approximation of the
real device structure.

The dynamic response of these devices has been also investigated. Fig. 4
shows the electrostatic and quantum capacitances associated with the source
and drain contacts. It is clearly seen that the quantum capacitances unlike
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Fig. 3. The comparison of simulation and experimental results. Material and geometri-
cal parameters are reported in [5]. a) Transfer characteristics. b) Output characteristics.
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Fig. 4. Electrostatic and quantum capacitances associated with the a) Source contact,
and b) Drain contact. Electrostatic capacitances dominate at low gate biases.
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Fig. 5. The differential transconductance
at different gate voltages
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the electrostatic capacitances depends on the bias voltages. At low gate
voltages electrostatic capacitances dominates the quantum capacitances. To in-
vestigate the ultimate frequency limit of this device the differential transcon-
ductance of this device is shown in Fig. 5, and based on (13) the cut-off
frequency is shown in Fig. 6. The cut-off frequency of the device can be improved
by decreasing the parasitic capacitances, which can be achieved by increasing
the source and drain spacers. However the ultimate limit will be the quantum
capacitances.

4 Conclusion

We showed that by using an adaptive integration method the iterative solu-
tion of the coupled Poisson and Schrödinger equation system will converge
very fast and in most of the simulations no damping is required. This method
was used to study the dynamic and static behavior of CNTFETs. Good agree-
ment between simulation and experimental results indicates the validity of the
models. This methodology can be well applied for the optimization of the
CNTFETs.
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