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Abstract. A quantum kinetic equation approach is adopted in order to
incorporate quantum effects such as collisional broadening due to finite
lifetime of single particle states, and collisional retardation due to finite
collision time. A quantum correction to the semiclassical electron distri-
bution function is obtained using an asymptotic expansion for the quan-
tum electron-phonon collision operator in its weak formulation. Based on
this expansion, the evolution of a highly peaked, nonequilibrium distri-
bution function in Si and Ge is analyzed. It is shown that in Ge and Si,
where the electron-phonon interaction is weak, the quantum correction
due to the finite collision time leads to an extra broadening of new repli-
cas of the initial distribution function. As the observation time exceeds
the collision duration, the quantum correction starts to diminish and the
semiclassical solution for a particular replica is recovered.

1 Introduction

The semiclassical Boltzmann transport equation is successfully used for trans-
port description and modeling in conventional semiconductor devices since the
early development of semiconductor technology. A particular advantage of the
Boltzmann equation is that it can be solved by a Markov-chain Monte Carlo
algorithm which opens an immediate opportunity for direct transport process
simulation. In the standard Monte-Carlo algorithm the carriers are moving on
classical trajectories between the two consecutive collisions. Classical trajecto-
ries are characterized by the well defined values of coordinates r and momenta
p which are related through the classical equations of motion. The scattering
events are considered to be isolated from each other and instantaneous in both
time and space. Locality of scattering events in time and space is one of the
main assumptions underlying the semiclassical transport description based on
the Boltzmann equation and should be re-evaluated in case of emerging quan-
tum effects. Indeed, due to the quantum uncertainty principle a carrier may not
have the well defined coordinate and momentum simultaneously. Therefore, the
particle motion on the trajectory between collisions may not be described classi-
cally if the device dimension is comparable to the carrier de-Broglie wavelength.
Similar, the scattering events may not be considered as local events in phase
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space. Locality of scattering in time may also be questioned. Due to the energy-
time uncertainty, the energy conservation during scattering is justified only when
the collision duration is large. This limit is usually referred to as the limit of a
completed collision leading to the famous Fermi golden rule. When the duration
of scattering is finite and the scattering may not be considered completed at
an observation time moment ¢, the particle state at this moment ¢ depends on
the history of states the particle has assumed at all times t < t, leading to the
memory effect. This effect is in clear contradiction to the Markovian nature of
the semiclassical Boltzmann equation and may not be described by the classical
transport picture.

Going beyond the semiclassical approach in transport description becomes in-
creasingly relevant. Indeed, with the 90 nm technology node being commercially
implemented, the physical transistor gate length is already in the range of 45
nm. According to the International Technology Roadmap for Semiconductors,
for the 32 nm technology node the physical gate length will be in the range of 10
nm, where quantum effects are expected to play a dominant role in determining
the transport through the device.

Several advanced computational techniques for including the quantum ef-
fects were proposed recently. The method based on the Nonequilibrium Green’s
function formalism treats the quantum effects in the most complete and con-
sistent way. However, due to its completeness, this method is rather complex
and computationally costly [I]. Another approach is based on the solution of
the Schrodinger equation using the modal analysis for an arbitrary 2D geome-
try (QDAME) []. Scattering can be included in this method by a Pauli master
equation, and testing was successful for the resonant tunneling diode. Neverthe-
less, the QDAME applications to double-gate MOSFETSs were so far limited to
ballistic coherent regime [4].

An alternative method to address the quantum effects is the Wigner function
approach [II]. Similar to the classical distribution function, the Wigner func-
tion depends on position and momentum simultaneously. Another attractive
feature of the Wigner function approach is that it allows to include all scatter-
ing processes in the device via the Boltzmann scattering integral. It brings a
unique opportunity to treat classical collisions on equal footing with the quan-
tum scattering described by the quantum collision operator [3]. The question
however rises as to whether the use of the classical Boltzmann scattering oper-
ator in the Wigner equation is justified. It is well known that the semiclassical
transport theory based on the Boltzmann equation neglects several quantum
mechanical effects such as collisional broadening due to the finite lifetime of sin-
gle particle states, collisional retardation due to the finite collision duration, and
intra-collisional field effects [I0]. To answer this question, we shall begin from a
complete quantum description of carrier scattering. The Levinson equation [5]
which describes an interaction of a single electron with an equilibrium phonon
bath represents a convenient starting point.

In this paper we analyze a quantum correction to the semiclassical scatter-
ing operator which is based on a recently obtained asymptotic expansion of
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Levinson’s scattering operator [9]. This method allows calculating a correction
to the distribution function simultaneously with solving of the Boltzmann equa-
tion, which is the advantage as compared to the previously used techniques.
An application of the algorithm to describe the transient processes in Si and
Ge is investigated in details for the case of electron-phonon interaction. Tak-
ing a highly nonequilibrium initial distribution function which is sharply peaked
around a certain energy as example, it is shown that for Si and especially for
Ge the method adequately describes the quantum correction to the distribution
function due to the finite collision time.

2 Basic Equations

A suitable quantum kinetic equation for the Wigner function describing the
interaction of a single electron with an equilibrium phonon bath has been pro-
posed by Levinson [5]. In case of vanishing electric field and spatially uniform
semiconductor the Levinson equation has the following form:

8 t
o = | [ a0 =) = St =)0 ()

Here, p denotes the momentum and p = |p| is its absolute value. The kernel
S(p,p’,t) corresponding to an electron-optical phonon scattering is taken in the
form

S(0'0) = Ty o {eos (B @) - B01) — )]

n

where AF' denotes the electron-phonon interaction matrix element, Aw the pho-
non energy, V the normalization volume, n = (exp(Bhw) — 1)~! is the phonon
occupation number corresponding to the temperature kgT = 1/, and E(p)
is the single particle energy. Due to an explicit time dependence of the kernel
@), the Levinson equation can fully describe the effects caused by the finiteness
of the collision time. Numerical integration of the equation by Monte Carlo
methods is, however, quite involved and can be performed for short evolution
times only, due to fast growth of variances with time [2]. Our goal is to develop
an approximate scheme which is computationally sound and less expensive. The
path we would like to explore is based on the assumption of weak electron-phonon
interaction. This assumption allows one to obtain an asymptotic expansion of
the scattering operator (2 in powers of the dimensionless interaction constant.
The principal term of this expansion reproduces the semiclassical Boltzmann
scattering integral. The second term in the series describes the correction to the
Boltzmann scattering integral due to the finite collision time. To derive it, we
rewrite () in scaled variables, introduced in [9]. Measuring electron energies E
in units of optical phonon energy € = E/(hw) and introducing the new variable
t =t/ty , where ty = (Aw) ™", the resulting equation takes the form [9]:
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where p(e) = 4m/2¢ is the density of states, corresponding to the parabolic dis-
persion £ = p?/(2m). The dimensionless electron-phonon interaction constant
A is given by
2VF?n [ m?3
A= : 4)
(2m)3 V hw
In the limit of small A corresponding to weak interaction the time scale ¢y be-
comes much larger than the period of lattice vibrations. Considering an asymp-
totic behavior of the collision operator in the left-hand side of [B]) for small A
when ¢/A > 1, the Levinson equation becomes [9]:

Of = Oolf] + A0:1[9:f] + o(N), ()

where Oy[f] represents the Boltzmann scattering integral,
O[fl(p.t) = Y ma, / de'p(e)[6(e — ' +v)f(e,t) = 6( —e +v)f(e,1)] (6)
v=%£1

For the sake of brevity we omit the tilde and use the notation ¢ for the scaled
variable ¢ here and below, unless it is specified otherwise.

The correction scattering operator ©1[0;f] formulated in a weak sense can be
written as [0]

/dsp(s)@l[atf](qb(s) -y ay/ds/ds’ln\e’—s+u\
v==+1

< o {5 e s} @

where ¢(g) is a smooth test function. The weak formulation of the collision oper-
ator ©1 conserves mass locally since (7)) is explicitely equal to zero for constant
test functions.

In contrast to the the Boltzmann scattering integral being a functional of
the distribution function, the correction scattering operator () depends on its
time derivative 0 f(¢/,t). The time derivative is a consequence of memory effects
present in the original Levinson equation. Expression ([{]) shows that the correc-
tion term ©1 [0 f] also depends on the values of the distribution function outside
of the constant energy shell defined by the Fermi golden rule (@). These off-
shell contributions are caused to the finiteness of the collision time and therefore
provide the quantum mechanical correction to the Fermi golden rule.
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3 Multiple Trajectories Monte Carlo Method

Equation () with scattering operators Og[f] and ©1[0; f], defined by (6l and (@),
respectively, represents our starting point. We formally solve the equation ()
for f(e,t) using an iteration technique. We are looking for a solution of the form
f(e,t) = fo(e, t)+Af1(e, t), where f1(e,t) is a correction term to the semiclassical
solution fy(e,t). The substitution into (Bl allows to reduce the problem of finding
an inverse of the operator (I — A©@1)[0; f], which is hardly treatable with Monte
Carlo technique, to a simpler problem of computing the effect of the scattering
operator @ acting on the first time derivative 9 fo(e,t). Thus we arrive to the
system of two coupled Boltzmann equations for fy and for the correction fi:

0 fo = Qolfol, Oif1 = Qolf1] + Q1[0 fol,

with the initial conditions fy(e,0) = ¢o(e) and f1(g,0) = 0.

To obtain a forward Monte Carlo algorithm, we are following the standard
procedure [7] writing the equations in integral form for an adjoint function g, (e, )
defined in such a way that the average (4, f;) = [;° dt [ de p(e)A(e, t) f;(e, t) of
an observable A(e,t) can be expressed as

(4, 1) /dt/dep FOE OgEE), =01, ()

Where the source-terms are defined as f\°) f dt’ e~ Q1 fol (e, 1),

(e, ) = e gy e).
It can be shown [7] that the function g;(e’, t) must satisfy the adjoint equation

gj(gxtf)Z/ dt/dsp(s)K(E,t,e',t’)gj(e,t)+A(€'7t')7 =01, (9)
0

with the free term given by the observable A(e’;t). The kernel K in (@) is defined
as K (e, t,e',t') = H({')H(t—t")e =) Sy (e, "), where g (e) is the total out-
scattering rate: ro(e) = 472, . ay\/2(c —v)H(e — v).

It is important that neither the kernel nor the source term in (@) depend on
j, so the index j can be omitted. Therefore, the sets of trajectories necessary
to calculate fp and f; are similar. Different statistical averages are obtained by
different terms f;o) in the inner product ().

The solution of (@) is found through corresponding Neumann series. The for-
ward Monte Carlo method is used to evaluate the series numerically. The al-
gorithm is designed to compute fy together with its time derivative 9 fy/0t. It
allows to solve both equations for fy and f; simultaneously providing better
computational scaling at large time compared to previously used techniques.

4 Results

We now apply the method developed to practically relevant semiconductors. In
Si and Ge the constant of electron interaction with nonpolar optical phonons is
expressed as [8]:
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Fig. 1. Distribution fo(e,t) with the quantum correction term Afi(e,t) added in Ge
at the time instances t; = 2 x 10713 s, ta =4 X 10713 s, t3 =6 X 1072 s
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leading to the dimensionless constant of electron-phonon interaction p = Amp(e),
which for ¢ = 1 is equal to u ~ 0.055. An even smaller value of the constant
1 =~ 0.02 is found in Ge. Because the values of the electron-phonon interaction
constant in Si and Ge are comparable, results of simulations in Si and Ge are
similar. Below we consider in details the case of Ge.

Simulation results of initial evolution of highly nonequilibrium distribution
with the quantum correction taken into account are shown in Fig. 1. The ap-
pearance of additional replicas is clearly seen at energies which are multiples
of the phonon energy, at first in the proximity of the initial energy distribu-
tion. With time passing the solutions propagate away from the initial energy eg
gradually creating more remote replicas. This is accompanied by an amplitude
decrease of the initial peak. In contrast to zero-temperature results [6], our sim-
ulations were done at room temperature 7=300 K. This leads to the possibility
of phonon absorption which results in the creation of additional replicas with
energies higher than the initial energy ¢y. However, the amplitude of these repli-
cas is much smaller compared to those at energies lower than g, reflecting the
fact that phonon absorptions by nonequilibrium electrons is less probable than
phonon emission.

In order to show the differences between the behavior with and without quan-
tum corrections, a snapshot at time step ¢t = 6 x 10713 s is shown in Fig. 2.
One can clearly see the additional broadening of more remote replicas when the
quantum correction is taken into account in contrast to the classical solution.
This is the result of scattering outside of an energy shell determined by the Fermi
golden rule energy conserved delta-function, which is allowed due to the finiteness

(10)
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Fig. 2. Comparison of the semiclassical Boltzmann distribution fo(e,t) and the distri-
bution fo(e,t) together with the quantum correction term Afi(e,¢) added in Ge at the
time ¢t = 6 x 107'% 5. Additional broadening of remote replicas is due to the finiteness
of the collision time.

of the collision time until the collision is complete. Similar collisional peak broad-
ening was reported previously while solving the Levinson equation directly [6].
At the same time, neighboring replicas are becoming almost indistinguishable
from those determined solely by the Fermi golden rule. This clearly shows that
the quantum correction decreases at large time. In order to explain such a behav-
ior, we note that the neighboring replicas correspond to emission (absorption)
of only a single phonon. After some time, there will be almost no electrons left
which did not emit (absorb) a phonon. For all electrons which emitted or ab-
sorbed a phonon, the collision process may be considered as completed, and the
Fermi golden rule enforced energy conservation delta function is recovered. It
is therefore expected that differences between the solutions with and without
corrections will disappear, starting from replicas close to the initial peak.

5 Conclusion

Based on the asymptotic expansion of the Levinson equation, the quantum cor-
rection to the classical distribution function due to the finite collision time is
analyzed. The Monte Carlo algorithm is developed in order to solve the Boltz-
mann equation simultaneously with the equation for the quantum correction.
For the electron phonon interaction the method is also applied to calculate the
quantum corrections in Si and Ge, where the electron phonon interaction is
weaker than in GaAs. It is shown that for a highly nonequilibrium initial distri-
bution peaked around a certain energy, the quantum correction leads to an extra
broadening of replicas of the initial distribution peak appearing at frequencies
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shifted by a multiple of the phonon frequency. At the same time the quantum
correction disappears for longer times when the limit of completed collision is
recovered.
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