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Abstract. The modifications and extensions of standard continuum models used for a description
of material transport due to electromigration with models for the copper microstucture are stud-
ied. Copper grain boundaries and interfaces are modeled as a network of high diffusivity paths.
Additionally, grain boundaries act as sites of vacancy recombination. The connection between me-
chanical stress and material transport is established for the case of strain build up induced by local
vacancy dynamics and the anisotropy of the diffusivity tensor caused by these strains. High dif-
fusivity paths are set on the surfaces of polyhedral domains representing distintcive grains. These
polyhedral domains are connected by diffusive, electrical, and mechanical interface models. For a
numerical solution a three-dimensional finite element method is used.
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INTRODUCTION

The electromigration behavior of copper interconnects realized in damascene architec-
ture indicates macroscopic and microscopic electromigration divergence sites. Macro-
scopic divergence sites exist at the cathode end of via bottoms where the barrier layer can
be a blocking boundary for the electromigration flux. The sites where two or more grain
boundaries intersect can be considered as microscopic electromigration divergence sites.
In the cases where failures are induced far away from a via, it has been shown that their
activation energies are often below the expected value for the grain boundary diffusion
[1]. This is a strong indication that copper interfaces to the barrier and/or capping layer
are dominant diffusion paths [1]. Considering interfacial diffusion as main contribution
to electromigration was a significant simplification for modeling and simulation of both
void nucleation and void evolution [2, 3]. Surface treatment aiming at strengthening the
copper/capping layer interface has been successfully applied to suppress interfacial dif-
fusion [1, 4] and to increase electromigration life time. Reducing the diffusivity at the
interfaces to the level of bulk and grain boundaries diffusivities necessities modeling of
the grain boundary network and the crystal orientation in the grains. Moreover, intrinsic
stress, introduced by the dual damascene process, has a strong impact on the bulk and
grain boundary diffusion which has also to be considered [5].

The main challenge in electromigration modeling and simulation is the diversity of
the relevant physical phenomena. Electromigration induced material transport is accom-
panied with the material transport driven by the gradients of material concentration,
mechanical stress, and temperature distribution. A comprehensive, physically based
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analysis of electromigration for modern copper interconnect lines serves as basis for
deriving sophisticated design rules which will ensure higher steadfastness of intercon-
nects against electromigration. In the present work we study a possible extensions of
the vacancy transport model described in [2] in order to include effects of the copper
microstructure and mechanical stress. characteristic features of an extended model are
verified by a three-dimensional simulation example.

THEORETICAL BACKGROUND

The most comprehensive models of electromigration and accompanying phenomena
are described by Mullins [6], Korhonen et al. [7], Sarychev et al., and Kirchheim [8].
The major ideas and concepts of these models are set here into a general framework
which enables their application to simulation of realistic three-dimensional interconnect
layouts.

Vacancy Continuity

The bulk chemical potential of vacancies in a stressed solid can be expressed as
[9, 10],

µ(σ ,Cv) = µ0 + µ(0,Cv)+
1
3

f Ωa tr(σ), (1)

where, according to [9], the chemical potential in the absence of stress is:

µ(0,Cv) = kB T ln
(Cv

C0
v

)

. (2)

C0
v is the equilibrium vacancy concentration in a stress free solid, µ0 is the corresponding

chemical potential, and σ is the tensor of the applied mechanical stress. A vacancy flux
~Jv driven by gradients of chemical potential and electromigration is given by,

~Jv = −
Cv

kB T
D(grad µ + |Z∗|egradϕ). (3)

ϕ is the electric potential which obeys Laplace’s equation (∆ϕ = 0). Since a vacancy is a
point defect with cubic symmetries and copper is an fcc crystal, the tensor of diffusivity
D is diagonal (D = D0I).

Vacancy transport fulfills the continuity equation,

∂Cv

∂ t
= −div~Jv +G, (4)

with G as a source function which describes the vacancy generation and annihilation
process. The equations (1)-(4) model electromigration of vacancies in the perfect fcc
monocrystal stressed by σ .
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Mechanical Stress

Since atoms and vacancies have a different volume of about 20-40% [8], the migration
and recombination of vacancies induce local stress build up.

Vacancy Migration

We consider a small test volume V inside the interconnect metal. If n atoms leave this
volume and n vacancies enter it, due to the different volume of the single vacancy and
atom (Ωv/Ωa = f < 1) the new volume will be,

Vnew = V −nΩa +n f Ωa. (5)

The relative volume change in this case is

δV
V

=
Vnew −V

V
= −(1− f )Ωa

n
V

= −(1− f )ΩaδCv, (6)

where δCv is the increment of the vacancy concentration. With a time derivative of (6)
and the well known mechanical relationship between volume increase and strain [11]

δV
V

= εm
xx + εm

yy + εm
zz = 3εm, (7)

we obtain

3
∂εm

∂ t
= −(1− f )Ωa

∂Cv

∂ t
. (8)

For the test volume V the vacancy continuity holds

−div~Jv =
∂Cv

∂ t
. (9)

From (8) and (9) we obtain for the components of the migration strain tensor

∂εm
i j

∂ t
=

1
3

(1− f )Ωa div~Jvδi j. (10)

Vacancy Recombination

Using the same concept as given above we calculate the new volume Vnew as a result
of production (annihilation) of n vacancies inside the initial volume,

Vnew = V ±n f Ωa. (11)

Now we can express a relative volume change as,

δV
V

=
Vnew −V

V
= ± f ΩaδCv. (12)
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Using relation (7) and the time derivative we obtain

3
∂εg

∂ t
= ± f Ωa

∂Cv

∂ t
. (13)

The time derivative ∂Cv/∂ t in this case is equal to the vacancy production/annihilation
source function G. Thus the time change of the strain caused by vacancy recombination
is given by,

∂εg
i j

∂ t
=

1
3

f Ωa Gδi j. (14)

From (10) and (14), we obtain a kinetic relation for the strain caused by vacancy
migration and recombination,

∂εv
i j

∂ t
=

Ωa

3

[

(1− f )div~Jv + f G
]

δi j. (15)

Stress Equilibrium

According to [9] the general form of the mechanical equilibrium equation is

3

∑
j=1

∂σi j

∂x j
= 0, for i = 1,2,3. (16)

Taking into account the strain induced by vacancy migration and recombination we
obtain [12]

σi j = (λ tr(ε)−B tr(εv))δi j +2Gεi j, (17)

where λ and G are Lame’s constants and B = (3λ + 2G)/3 is the bulk modulus. The
strain tensor εv is defined by relation (15).

Anisotropic Diffusivity

In the case of a homogeneously deformed cubic crystal with strain field ε the vacancy
diffusivity tensor obtains additional contributions [13]

Di j = D0 δi j +
3

∑
k,l=1

di jlk εkl, (18)

where di jlk is the elastodiffusion tensor. Equation (18) shows that strain causes an
anisotropy of the diffusivity tensor. A comprehensive analysis of the point defect jump
frequencies in a strained solid and calculation of the elastodiffusion tensor components
is provided in [5].
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Microstructure

The network of grain boundaries influences vacancy transport during electromigration
in several different ways. The diffusion of point defects inside the grain boundary is
faster compared to grain bulk diffusion due to the fact [14] that a grain boundary
generally exibits a larger diversity of point defect migration mechanisms. Moreover,
formation energies and migration barriers of point defects are in average lower than
those for lattice.

In polycrystalline metals, grain boundaries are also recognized (together with disloca-
tions loops) as sites of vacancy generation and annihilation [8, 15]. During the diffusion
process vacancies generally seek to reach a concentration Ceq

v which is in equilibrium
with the local stress distribution,

Ceq
v = C0

v exp
(

− f
tr(σ)Ω
3kB T

)

. (19)

This tendency is supported by recombination mechanisms which are commonly modeled
by a source function G in the form introduced by Rosenberg and Ohring [16],

G = −
Cv −Ceq

v

τ
, (20)

which means production of vacancies, if their concentration is lower than the equilib-
rium value Ceq

v and their annihilation in the opposite case. τ is the characteristic re-
laxation time [17]. The full understanding of the source function G is still missing but
it surely has to comprise three processes: exchange of point defects between adjacent
grains, exchange of point defect between grains and grain boundaries, and point defect
formation/annihilation inside the grain boundaries.

SIMULATION EXAMPLE

We consider an interconnect via realized in dual damascene architecture consisting of
copper, capping, and diffusion barrier layers (Figure 1). The copper segment is split
into polyhedral grains (Figure 2). For the solution of the governing equations (1)-(4) an
in-house finite element method code is used. The diffusion coefficient along the grain
boundaries and the copper interfaces to the capping and barrier layers is assumed to be
5000 times larger than that in the bulk regions. The Rosenberg and Ohring recombination
term G is assumed to be active only in the close vicinity of the grain boundaries.
The vacancy concentration on both ends of the via is kept at the equilibrium level
during simulation and all materials are assumed to be relaxed. The obtained vacancy
distribution is presented in Figure 3. Consistent with experimantal results [18] the
peak values of the vacancy concentration develop at the intersection lines of the grain
boundaries and the capping layer.
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FIGURE 1. Typical dual-damascene layout used for simulation.

FIGURE 2. The copper segment is split into polyhedral grains and each polyhedron is separately
meshed with initial mesh.

CONCLUSION

A careful analysis of the connection between the local vacancy dynamics and strain
build-up has been carried out. The obtained relations have been coupled to an elec-
tromigration model using the concepts of stress driven diffusion and anisotropy of the
diffusivity tensor.

For a correct physical handling of the grain boundary network as the network of high
diffusivity paths and at the same time as sites of vacany recombination, the method of
splitting of a copper segment into grain segments is introduced. The grain boundary
segments are treated as simulation sub-domains connected to each other by diffusive,
mechanical, and electrical interface conditions.
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FIGURE 3. The peak value of vacancy concentration (displayed iso surfaces) is accumulated at the
grain boundary/capping layer crossing line.

A dual-damascene architecture example layout is used to illustrate and verify the
introduced modeling approach.

The obtained simulation results qualitatively resemble the behavior observed in ex-
perimental investigations.
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