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Abstract. A non-parabolic piezoelectric model of electron-phonon in-
teraction in Gallium Nitride is discussed. The Monte Carlo aspects of
the model, needed for the simulation tools which provide the character-
istics of GaN-based devices are analyzed in details. The piezo-scattering
rate is derived by using quantum-mechanical considerations. The an-
gular dependence is avoided by a proper spherical averaging and the
non-parabolicity of the bands is accounted for. For the selection of the
after-scattering state we deploy the rejection technique. The model is
implemented in a simulation software. We employ a calibrated exper-
imentally verified set of input material parameters to obtain valuable
data for the transport characteristics of GaN. The simulation results are
in good agreement with experimental data available for different physical
conditions.

1 Introduction

Gallium Nitride (GaN) based devices demonstrate impressive power capabilities
in radio-frequency range which recently became of interest for applications in
state-of-the-art mobile communication technology, e.g. base stations amplifiers.
The physical model of GaN, needed for the Monte Carlo (MC) simulation tools
to describe the electronic and optical behavior of this material, is subject of an
active research and development [1], [2], [3]. The model provides information
about the band structure (analytical or full-band), the scattering mechanisms
(caused by impurities, acoustic and optical phonons) and other microscopic char-
acteristics which govern the carrier transport in the semiconductor.

There are two types of GaN crystal lattice structures: wurtzite or zink blende.
Due to the the lack of inversion symmetry, elastic strain gives rise to macroscopic
electric fields. These fields cause additional coupling between the acoustic waves
and the free carriers, known as piezoelectric scattering. Nitrides are character-
ized by the largest piezoelectric constants among the III-V semiconductors so
that this scattering must be taken into account in the MC simulations. The
papers related to this subject stress on the simulation results and merely for-
mulate the out-scattering rate of the utilized piezo-model. The next section of
this work focuses on the MC aspects and peculiarities of a non-parabolic piezo-
scattering model. The simulation results obtained by the proposed MC approach
are discussed in the last section.
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2 The Model

According the Golden rule the probability for scattering from electron state
k to state k′ by phonons with wave vector q in branch j is determined with
the help of the matrix element |〈k′, n̂′

q,j|He−p|n̂q,j,k〉|2δ(E − E′). Standard
notations are used, where He−p is the interaction Hamiltonian |n̂,k〉 denotes
the electron-phonon state, n̂ and n̂′, and E and E′, refer to the initial and fi-
nal phonon number and energies respectively. Phonons are described by waves
s = e exp(iq.r − ωqt) where r is the position, ωq the energy and e the unit
vector of the polarization1. The basic piezo-interaction energy is proportional
to the integral of the electric displacement D(r) associated with the electron,
multiplied by the lattice polarization P(r). The screening is accounted via the
Thomas-Fermi model, which introduces in D the reciprocal Debye screening
length q0. The polarization is proportional to the strain S caused by the prop-
agating acoustic waves: Pi =

∑
ik eikSk/εr where, in reduced notations i, k run

from 1 to 6, eik denote the piezo coefficients, and εr is the dielectric constant.
For zinc blende crystals e14 = e25 = e36 and all other components are zero. For
wurtzite only e15 = e24, e31 = e32 and e33 are non-zero. The matrix element of
He−p gives rise to conservation rules for the phonon numbers: n′ = n ± 1 and
the electron wave vector k′ = k ±q. The Bloch assumption [4] allows to replace
the phonon degrees of freedom with their mean equilibrium number nq given
by the Bose-Einstein distribution. The factor H ′(ekl, e, α, β, γ, q0, q) summarizes
the complicated dependence of the matrix element on the polarization e and
direction cosines α, β, γ of the direction of propagation of q with respect to the
crystal axes. A simplification is certainly desirable and is achieved by a spherical
averaging. The averaged scattering rate W can be written explicitly as:

W = Wa + We =
∑

±

2π

h̄
|F (q)|2(nq +

1
2

∓ 1
2
)δ (ε(k ± q) ∓ ε(k) ∓ h̄ωq) (1)

where Wa corresponds to absorption (k′ = k+q) and We to emission (k′ = k−q)
of a phonon with wave vector q. The averaged isotropic coupling constant depends
on q as |F (q)|2 = Cf(q), f(q) = q3

(q2+q2
0)2 . The constant C will be introduced later.

We consider a three valley (Γ , U, and L) spherical non-parabolic energy dis-
persion model with m the effective electron mass for the corresponding valley:

h̄2k2

2m
= ε(k)(1 + αε(k)) = γ(k); k =

1
h̄

√
2mγ; v(k) =

h̄k
m(1 + 2αε(k))

2.1 Absorption

The absorption out-scattering rate λa =
∫

Wadk′ is calculated by using spherical
coordinates (q, θ, φ), where the z axis is chosen along k so that θ becomes the angle
between k and q:

1 In an isotropic media there are one longitudinal, L, (e||q) and two transverse, T ,
e ⊥ q branches. In crystals L and T exist for special directions only.
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λa =
V 2πC

(2π)3h̄

∫ 2π

0
dφ

∫ 1

−1
d cos θ

∫ ∞

0
dqq2f(q)nqδ(ε(k, q, θ) + ε(k) − h̄ωq)

where V
(2π)3 is the density of states in the q space. The acoustic phonon energy

h̄ωq = h̄vsq introduces the sound velocity vs which is anisotropic. The following
consideration can be applied if a particular direction of q is considered, or if a
spherical average is taken for vs. The argument of the delta function becomes
zero if

cos θ =
2vs

v(k)
− q

2k
(1 − 4αεs); εs =

mv2
s

2
which, furthermore, gives rise to the following condition for q1 ≤ q ≤ q2:

(i) if vs

v < 1 then −1 ≤ cos θ ≤ vs

v and q1 = 0, q2 = 2k(vs/v+1)
1−4αεs

;

(ii) else −1 ≤ cosθ ≤ 1 and q1 = 2k(vs/v−1)
1−4αεs

, q2 = 2k(vs/v+1)
1−4αεs

.

By using the equipartition approximation: nq = kT/h̄ωq = kT/h̄vsq and intro-
ducing the dimensionless variable x = q/q0 (xi = qi/q0), the scattering rate is
obtained:

λa =
e2K2

av

√
mkT

8πε0εrh̄
2√2γ(k)

(1 + 2αε(k))

︸ ︷︷ ︸
C1(k)

I1(x1, x2) +
e2vsK

2
av

√
m2αkTq0

8πε0εrh̄
√

2γ(k)
︸ ︷︷ ︸

C2(k)

I2(x1, x2)

where e is the electric charge and the integrals I1 and I2 are evaluated as follows:

I1 =
∫ x2

x1

dx
x3

(x2 + 1)2
=

∫ x2

x1

J1(x)dx; I2 =
∫ x2

x1

dx
x4

(x2 + 1)2
=

∫ x2

x1

J2(x)dx

The coefficients C1(k) and C2(k) in front of the integrals are expressed in terms
of the dimensionless quantity K2

av. For zinc blende and wurtzite structures we
have respectively

K2
av =

e2
14

ε0εr

(
12

35cL
+

16
35cT

)

K2
av =

e2
L

cLε0εr
+

e2
T

cT ε0εr
.

The longitudinal and transverse elastic constants cL and cT can be obtained from
the elastic coefficients c11, c12, and c44 or from the longitudinal and transverse
sound velocities vsL and vsT, if known.

cL = 0.6 · c11 + 0.4 · c12 + 0.8 · c44; vsL =
√

cL/ρ

cT = 0.2 · c11 − 0.2 · c12 + 0.6 · c44; vsT =
√

cT/ρ

The piezo coefficients e15, e31, and e33 are used to calculate the corresponding
e2
L and e2

T, which are necessary to obtain the coupling coefficient Kav taking into
account the wurtzite structure.

e2
L =

e2
33

7
+

4e33(e31 + 2e15)
35

+
8(e31 + 2e15)2

105
;

e2
T =

16e2
15

35
+

16e15(e33 − e31 − e15)
105

+
2(e33 − e31 − e15)2

35
.
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Selection of the after-scattering state. Since cos θ is uniquely determined
by the value of q, the main task is to derive algorithm for selection of q. The
angle φ is then selected randomly. φ, cos θ and q determine q, and the after-
scattering state is given by k′ = k + q. The probabilities P1 and P2 = 1 − P1
for the after scattering state to be selected by the corresponding terms which
comprise λe are

λa = C1I1 + C2I2; P1 =
C1I1

C1I1 + C2I2
; P2 =

C2I2

C1I1 + C2I2

Furthermore, to select q by either term we have to solve the equality Ii(xr, x1) =
rIi(x2, x1); where r is a random number and q is determined from q = xrq0.
Neither of these equations can be solved for xr in a simple way. The problem
can be overcome by application of a rejection technique: The value of xr is
generated by using a function ξi(x) greater than the corresponding integrand
Ji. Then, depending on the non equality ξi(xr)r′ < Ji(xr), where r′ is a second
random number, the value of xr is accepted or rejected.

For the first case we choose ξ1(x) = x
x2+2 , ξ1(x) > J1(x)∀x (Fig. 1). This

choice gives the following expression for xr:

x2
r = (x2

2 + 2)r(x2
1 + 2)1−r − 2

In the second case we choose ξ2(x) = x√
x2+4

, ξ2(x) > J2(x)∀x (Fig. 2) so that:

x2
r =

(

r
√

x2
2 + 4 + (1 − r)

√
x2

1 + 4
)2

− 4
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Fig. 1. The function ξ1 (solid line) as com-
pared to J1 (dots)
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Fig. 2. The function ξ2 (solid line) as com-
pared to J2 (dots)

2.2 Emission

The necessary condition for emission is the initial electron energy to be greater
than the phonon energy: ε(k) > h̄ωq. The out-scattering rate is calculated in the
same way as in the case of absorption. In particular the delta function gives rise
to the relation:

cos θ =
2vs

v(k)
+

q

2k
(1 − 4αεs); (2)
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giving rise to the condition q1 ≤ q ≤ q3, where
(i) if vs

v < 1 then vs

v ≤ cos θ ≤ 1 and q1 = 0, q3 = 2k(1−vs/v)
1−4αεs

;
(ii) else there is no solution.

Thus, the out-scattering rate is evaluated as:

λe = C1(k)I1(0, x3) − C2(k)I2(0, x3)

Selectionof the after-scattering state. We utilize the condition C1I1(0, x3) >
λe to develop a rejection technique. Since ξ1 is a majorant function for J1, the value
of xr is obtained according to:

x2
r = (x2

3 + 2)r21−r − 2

A second random number r′ is used to accept or reject xr in the inequality:

C1(k)ξ1(xr)r′ < C1(k)J1(xr) − C2(k)J2(xr)

The functions ξ1 and ξ2 are compared on Figs. 1 and 2 with the corresponding
counterparts J1 and J2. In both cases the difference is negligible for x = q/q0 > 3.
At room temperatures the average electron wave vector q is of order of 107 [1/cm],
while q0 is usually an order of magnitude smaller. Hence the region of significant
rejection, below x = 3, is relatively rarely visited during the simulations.

3 Simulation Results

In order to establish a rigorous MC simulation, parameters from various publica-
tions have been collected and analyzed [5]. Table 1 provides a summary of bulk
material parameters for GaN, necessary for analytical band-structure MC sim-
ulations, such as energies of lowest conduction bands, effective electron masses,
non-parabolicity factors, and model parameters for the acoustic deformation po-
tential (ADP) scattering, inter-valley scattering (iv), and polar optical phonon
scattering (LO). ε∞ and εs are the optical and static dielectric constants, ρ is
the mass density.

Table 2 summarizes the values for GaN of the elastic constants c11, c12, and c44
together with the piezo coefficients e15, e31, and e33 adopted in our MC simulation.
From them, the corresponding cL, cT, vsl, vst, e2

L, e2
T, and Kav are obtained.

Using the established setup of models and model parameters, we obtained MC
simulation results for different physical conditions (doping, temperature, field,
etc.) for bulk GaN. Fig. 3 shows the low-field electron mobility in hexagonal

Table 1. Summary of material parameters of wurtzite GaN for Monte Carlo simulation

Bandgap energy Electron mass Non-parabolicity Scattering models
Γ1 U Γ3 mΓ1 mU mΓ3 αΓ1 αU αΓ3 ADP hfiv hfLO ρ εs ε∞

[eV] [eV] [eV] [m0] [m0] [m0] [1/eV] [1/eV] [1/eV] [eV] [meV] [meV] [g/cm3] [-] [-]
3.39 5.29 5.59 0.21 0.25 0.40 0.189 0.065 0.029 8.3 91.0 92.0 6.07 8.9 5.35
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Table 2. Summary of elastic constants of GaN and the resulting longitudinal and
transverse elastic constants and sound velocities

c11 c12 c44 cL cT vsl vst e15 e31 e33 e2
L e2

T Kav

[GPa] [GPa] [GPa] [GPa] [GPa] [m/s] [m/s] [C/m2] [C/m2] [C/m2] [C2/m4] [C2/m4] [-]
373 141 94 355 103 7641 4110 -0.30 -0.36 1.0 0.106 0.452 0.137

GaN as a function of free carrier concentration. Two MC simulation curves are
included to demonstrate the effect of the piezo-scattering model and its impact
on the low-field mobility. Our MC simulation is in fairly good agreement with ex-
perimental data from collections or single point measurements from [6,7,8,9,10].
The electron mobilities, selected for comparisons in this work, consider bulk
material and are measured using the Hall effect. The discrepancy between our
simulation results and the measured data might be attributed to dislocation
scattering which is not considered in our work. This mechanism is considered to
be a source of mobility degradation for GaN samples.

Fig. 4 shows the corresponding scattering rates as a function of the doping
concentration in hexagonal GaN. Note, that the piezoelectric scattering is the
dominant mobility limitation factor at low concentrations even at room temper-
ature, beside the commonly accepted importance at low temperatures.
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Fig. 3. Low-field electron mobility as a
function of carrier concentration in GaN.
Comparison of the MC simulation results
and experimental data.

10
14

10
15

10
16

10
17

10
18

10
19

10
20

Carrier concentration [cm
−3

]

10
11

10
12

10
13

10
14

Sc
at

te
ri

ng
 r

at
es

 [
s−

1 ]

Ionized impurity
Acoustic deformation potential
Piezoelectric acoustic phonon
Polar optical phonon 92 meV

Fig. 4. Scattering rates utilized in our
simulation model for wurtzite GaN as a
function of carrier concentration at room
temperature

Fig. 5 shows the low-field electron mobility as a function of lattice temperature
in GaN at 1017 cm−3 concentration. The experimental data are from [10,11,12].
Note, that mobility increases over the years because of the improved material
quality (reduced dislocation density).

Fig. 6 provides the electron drift velocity versus the electric field. We compare
our MC results with other simulations [3,13,14,15,16], and with the available
experimental data [17,18]. The low field data points are in qualitatively good
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Fig. 5. Low-field electron mobility as a
function of lattice temperature in GaN at
carrier concentration of 1017 cm−3
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Fig. 6. Drift velocity vs. electric field in
wurztite GaN: Comparison of MC simu-
lation results and experimental data

agreement, at higher fields experimental values are significantly lower. Both
experiments [17,18] of electron velocities in bulk GaN, employ pulsed voltage
sources. The discrepancy in the MC results comes from differently chosen sets
of parameter values and considerations of scattering mechanisms.

Our MC results prove that the piezoscattering mechanism has less influence
at higher electric fields than other scattering mechanisms, such as polar optical
scattering.

4 Conclusion

A non-parabolic piezoelectric model of electron-phonon interaction is derived.
It is applied to materials with hexagonal crystal structure in a Monte Carlo
simulator. The importance of the piezoelectric effect is illustrated by simulation
results for different physical conditions.
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