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Moving Boundary Applications in Process and Interconnect TCAD

Hajdin Ceric

(joint work with Johann Cervenka, Erasmus Langer, Siegfried Selberherr)

Modern Technology Computer Aided Design (TCAD) applications demand math-
ematical descriptions of physical phenomena, which are both accurate and suitable
for numerical implementation. In the case of an evolving surface, mathematical
models include material exchange between surface and surrounding phases and,
at the same time, material transport along the surfaces. Stress phenomena often
play a crucial part in the formation and evolution of free surfaces and, therefore, a
model framework must also consistently include mechanical sub-models. For some
applications, such as simulation of crystalline texture evolution, it is also neces-
sary to extend the single surface models towards surface models for multiphase
systems.

The numerical handling of mathematical models has to produce computation-
ally efficient algorithms with reasonable demand on computer resources. Conver-
gence and stability conditions should not impose strong restrictions on the choice
of simulation domain geometries and discretization meshes.

The most general form of an evolving surface normal speed vn(r) used in TCAD
applications is

(1) vn(r) = ∇s(D(r)(qE(r) + γsΩ∇sκ) · t) + F (r).

The first term corresponds to surface material transport which is driven by the
external field (E(r)) and the curvature gradient (∇sκ). D(r) is the anisotropic
surface diffusivity, t is the unit vector tangential to the surface, γs is the surface
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energy, Ω is the volume of an atom, q is the effective charge, and F (r) is the general
speed function depending on the material exchange with the surrounding phases.
Equation (1) describes the motion of a sharp interface, which implies that any
utilized numerical approach has to deal with spatial discretization of an evolving
surface. The surface is described by specifying a usually large number of points on
it. Over the time the phase surface evolves and changes its morphology and even
more points may be required to accurately describe it. Such techniques are quite
complicated to implement and also tend to have rather poor numerical stability.

For the investigation of electromigration induced void evolution we have applied
a modified Chan-Hilliard equation [2, 1]. Here, the dominant material transport
is electromigration and self-diffusion at the void surface. A material exchange
between a metal bulk and the void surface is neglected so that the sharp interface
formulation of the moving boundary given by (1) can be simplified by setting
F (r) ≡ 0. The Chan-Hilliard theory enables a representation of an evolving void
surface as interface between two phases. Both phases are defined by values of an
order parameter φ, which takes the value +1 in the metal and the value −1 in the
void area. This interface between phases is not sharp but has a finite width where
φ takes values between −1 and +1. The phase field interpretation of the model
equation (1) is

(2)
∂φ

∂t
=

2D

ǫπ
∇ · (∇µ+ qE),

(3) µ =
4Ωγs

ǫπ
(f ′(φ)− ǫ2∆φ).

where µ is the chemical potential, f(φ) is the double obstacle potential as defined in
[1], and ǫ is a parameter controlling the void-metal interface width. The equation
system (2),(3) is solved by means of a finite element method in combination with
adaptive mesh refinement [2]. The described approach is utilized for investigation
of void behavior in the vicinity of high gradient electrical fields and void collision
with a barrier layer [2].

During deposition or etching in process technology a material is added or re-
moved from the free evolving surface, respectively. A general assumption is low
adatom mobility so that the first term in (1) can be neglected and the surface
evolution is defined by the simple relation vn(r) = F (r). The speed function
is generally related to properties of the reactor, where the deposition or etching
process takes place. In this case it is convenient for simulation to apply the Level
Set method [4]. This approach is presented considering as an example the etching
of sacrificial silicon dioxide (SiO2) layer by hydrofluoric acid (HF).
The chemical reaction on the surface of the sacrificial layer is [3]

(4) 6 HF + SiO2 ←→ H2SiF6 + 2H2O.

The transport of the etching agent (HF) occurs via linear diffusion,

(5)
∂CHF

∂t
= ∇ · (D∇CHF),
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with the boundary conditions C(0, t) = Cb where the etching agent enters the
simulation domain. On the interface between the sacrificial layer surface and the
etch medium (etching front) the following boundary relationships hold

CHF(r, t) = Cs,

∂CHF

∂n
= JHF = k1Cs + k2C

2
s ,(6)

for t > 0. r is the position vector belonging to the etching front and n is the
normal vector.

The geometrical shape of the etching front is described by the Level Set function
φ. The zero iso-surface is equivalent to the geometrical interface. The Level Set
function has a same meaning as order parameter in Chan-Hilliard theory and
therefore the same symbol φ is used. For a given speed function F the governing
equation of the Level Set is [4],

(7)
∂φ

∂t
+ F‖∇φ‖ = 0.

On the basis of equation (4) we obtain the characteristic speed function for sacri-
ficial etching at the etching front,

(8) F = −∆δ

∆t
= −6 JHF

1

ρSiO2

,

where ∆δ is a small displacement of the etch front during time step ∆t. This
locally determined speed function is extended to the whole simulation domain in
order to solve equation (7). The relationships (6) can now be rewritten to include
the Level Set description of the etching front. Introducing a parameterized surface
description rφ = rφ(α1, α2), where α1, α2 ∈ R and are chosen so that φ(rφ) = 0,
leads to

CHF(rφ, t) = Cs,

1

‖∇φ‖∇CHF · ∇φ
∣

∣

∣

r=rφ

= JHF = k1Cs + k2C
2
s .(9)

By means of equations (5) and (7) and the interfacial conditions (9) the moving
boundary problem is well-defined. Simulations based on this model are used for
investigations of a sacrificial layer profile in dependence on an etch agent distrib-
ution.
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A finite element method for anisotropic mean curvature flow of graphs

Klaus Deckelnick

(joint work with Gerhard Dziuk)

We consider a family of hypersurfaces Γt ⊂ R
n+1, 0 ≤ t < T , which evolve

according to the weighted mean curvature flow

(1) V = −Hγ on Γt.

Here V is the normal velocity of Γt and Hγ denotes its anisotropic mean curvature
with respect to the smooth, positive, convex and 1–homogeneous weight function
γ : R

n+1 \ {0} → R. The law (1) can be interpreted as the L2–gradient flow of the
weighted area

∫

Γ γ(ν)dA, where ν denotes the unit normal to Γ.
Let us assume that the surfaces Γt are graphs over some base domain Ω ⊂ R

n, so

that Γ(t) = {(x, u(x, t)) |x ∈ Ω} with the orientation given by ν = (∇u,−1)√
1+|∇u|2

. The

evolution law (1) then translates into the following PDE for the height function u:

(2) ut −
√

1 + |∇u|2
n
∑

i,j=1

γpipj
(∇u,−1)uxixj

= 0 in Ω× (0, T ),

to which we add the following boundary and initial conditions

u = g on ∂Ω× (0, T ),(3)

u(·, 0) = u0 in Ω.(4)

Assuming that γ is strictly convex, i.e.

∃γ0 > 0 D2γ(p)q · q ≥ γ0|q|2 ∀p, q ∈ R
n+1, |p| = 1, p · q = 0

an existence and uniqueness result for the initial–boundary value problem (2)–(4)
follows from results due to [9] under suitable conditions on γ, u0, g and ∂Ω (see
also [2]). The variational form of (2),

∫

Ω

utϕ
√

1 + |∇u|2
+

n
∑

i=1

∫

Ω

γpi
(∇u,−1)ϕxi

= 0 ∀ϕ ∈ H1
0 (Ω), 0 ≤ t ≤ T

forms the basis for discretizing the problem in space. Let Th be a regular family
of triangulations of Ω, Ωh =

⋃

S∈Th
S and Xh the space of linear finite elements

as well as Xh0 := Xh ∩H1
0 (Ωh). Furthermore, let τ > 0 be a time step, tm := mτ
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