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The SiGe/Si material system is recently a subject of increased research interest, since it 
provides beneficial band structure and transport properties due to strain. Monte Carlo 
method is used for analyzing these properties. Special focus is put on the description of the 
anisotropic majority/minority electron mobility in strained Si layers as a function of doping, 
electric field, and material composition. 
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1. INTRODUCTION 
The influence of strain on the intrinsic mobility of Si was first investigated in the 

early 1950s [1, 2]. The idea came to life again in the 1990s when it was first 
demonstrated that n-MOSFETs on strained substrates exhibit as much as 70% higher 
effective mobility than those on unstrained substrates [3]. Since then, the 
semiconductor industry has adopted several different technologies to introduce strain 
in the channels of MOS devices. For the CMOS technology, although the SiGe 
channel has been used to enhance the performance of PMOS transistors, it leads to a 
lack of improvement for the complementary NMOS transistors. The replacement of 
the channel material by strained Si, which utilizes an underlying relaxed SiGe [001] 
substrate for its functioning, renders a solution to the problem since it leads to 
enhancement of both the electron and hole mobilities. In order to investigate and 
design strained Si transistors, it is necessary to properly model the carrier mobilities 
in these devices. 

2. SIMULATION RESULTS 
Monte Carlo simulation which accounts for alloy scattering and the splitting of 

the anisotropic conduction band valleys due to strain in combination with an accurate 
ionized impurity scattering model, allowed us to obtain results for the low-field 
electron mobility in strained Si (SSi) for the complete range of donor and acceptor 
concentrations and Ge contents y in the Si1-yGey buffer layer. The results obtained 
have been verified against experimental data which are available in the form of piezo-
resistance coefficients. Fig. 1 (left) shows the in-plane (parallel) and the out-of-plane 
(perpendicular) minority electron mobility in strained Si as a function of the Ge 
content y in the Si1-yGey buffer at 300 K for different acceptor doping concentrations. 
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The mobility obtained from piezo-resistance coefficients, which exhibits a linear 
increase for low strain levels [2, 4], is shown for comparison. 

The difference between majority and minority electron mobilities [5] is a known 
phenomenon caused by effects such as degeneracy and the different screening 
behavior of electrons and holes in the semiconductor. An analytical model which 
describes this effect based on Monte Carlo simulation data is given in [6]. Fig. 1 
(right) demonstrates a good match between the analytical model, our Monte Carlo 
simulation data, and measurements from [5, 7, 8, 9] for Si at 300 K. We use the same 
functional form to fit the doping dependence of the parallel and the perpendicular 
mobility in strained Si [10]. Fig. 1 (right) compares Monte Carlo simulation data with 
the model for the extreme case of strained Si on Ge. 
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Figure 1. Parallel and perpendicular minority electron mobilities in strained Si as 
a function of the Ge content y in the Si1-yGey [001] buffer layer for different acceptor 
doping concentrations (left). Comparison between Monte Carlo simulation data and 
experimental data for the majority and minority electron mobility in Si as a function 
of doping concentration; Parallel and perpendicular minority mobility in strained Si 
on Ge (right). 

 
Fig. 2 shows the doping dependence of the in-plane minority and majority 

electron mobility components in strained Si layers for different Ge contents in the 
underlying SiGe for [001] orientation of the substrate. The solid lines depict the 
results as obtained from the analytical model, while the symbols indicate the Monte 
Carlo simulation results. As can be seen, the model reproduces the increase in 
minority electron mobility for high doping concentrations for all strain levels, when 
compared to majority electron mobility. 

Fig. 3 (left) presents the velocity-field characteristics for unstrained and strained 
Si for [100] field direction as obtained from MC simulations. The simulation results 
agree well with measured data [11, 12] and other Monte Carlo simulation data [13, 
14, 15]. Fig. 3 (right) shows the velocity-field characteristics as obtained from MC 
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simulations for biaxially strained Si grown on a relaxed SiGe substrate for different 
Ge contents and electric field along the in-plane [100] and out-of-plane [001] 
direction, respectively. The total velocity increases with strain for a field along the 
[100] direction and it decreases for a field along the [001] direction. For the in-plane 
electric field [100] the electron velocity exhibits a region of small negative 
differential mobility, typical for III-V semiconductor materials. 
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Figure 2. Doping dependence of the in-plane minority (left) and majority (right) 

electron mobility in strained Si calculated for different Ge contents in SiGe [001] 
substrate. 
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Figure 3. Electron velocity vs. electric field characteristics. Unstrained and 

strained Si on Si0.7Ge0.3 for [100] field direction (left). Strained Si on SiGe with Ge 
content as a parameter for field along [100] and [001] directions (right). 
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3. CONCLUSION 
We present results from Monte Carlo simulations of strained Si on SiGe [001] 

substrates. Electron mobilities are obtained for different conditions of doping, strain 
(substrate mole fractions), and electric field. The results are verified against 
measurements and other Monte Carlo simulation data. TCAD simulation tools need 
correct models of the strained Si/SiGe material system, especially with respect to 
carrier transport. Experimental data remain a basic input for verification of analytical 
TCAD models. However, Monte Carlo simulation data with confirmed accuracy can 
deliver information which is still experimentally missing. 
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