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Abstract

In the field of scientific computing there is a manifold of seadte applications and tools available which pro-
vide methods and libraries for the solution of very specifichbem classes [1,13, 15, 22,26]. They are mostly
specialized on a certain type of underlying mathematicalehcesulting in a solution process which is highly pre-
dictable. We have designed a topological library [11] wheclables the development of an equation specification
mechanism for all different kinds of discretized partidfetiential equation by utilizing functional programming.
This work examines the performance aspects of our domaicifspembedded language (DSEL) approach for
mathematical equation specification.

1. Introduction

Our institute has gained profound experience in develoaimjreleasing scientific code [4, 10, 19]. The software
products in the list below represent the chronological outif the institute’s research and development activities
over more than a decade (OO: object oriented):

S+ AP Two- and three-dimensional interconnect simulator (inafee)
M NI MOS- NT  Two- and three-dimensional device simulator (imperai®¥®)
SI ESTA Framework for various simulators and optimization (OO)
FEDOS A three-dimensional PDE solver (OO)

WSS Object-oriented geometrical and topological library (OO)

With this steady evolution of software tools, the shift aidiege of programming paradigms can be clearly ob-
served. In the first years at our institute, only one and tieedisional data structures with so called structured
topology cell types were used due to the limited resourcéseofomputer. The structured programming paradigm
was sufficient for this type of task [10]. With the improverhehcomputer hardware and the developing object-
oriented programming paradigm, the shift to more compleéa dauctures such as unstructured three-dimensional
simplex and cuboid cell complex types was possible. Theldpugent of complex applications for process [4]
and device [14] simulation are examples for this evolutigmmath. All of the applications developed at our insti-
tute use very specialized data structures for describiaggtes, quadrilaterals, tetrahedra, cuboids with ciffer
mechanisms for access, traversal operations, and daég@etorhe most basic reason for this is the fact, that due to
the assembly of large linear equation systems, any oveffn@adgeneric data structures would increase the long
simulation run-times drastically.

Nowadays, the simulation requires different dimensiorii§eregnt topological cell complex types, different nu-
merical treatment, orthogonal module usage, and numeriettiods employed in discretization, interpolation, or
optimization. These methods make use of highly nonlineactionsf,. (x) which can consist of several coupled
differential equations. Therefore the field of scientifierqmuting requires an efficient and sufficient notation of
equation systems, has to construct equations and has tacttbe topological traversal of different underlying
objects. By enforcing a unique and generic interface to iffiérent kinds of topological cell types and a new
type of equation specification mechanism for all differeintlls of discretized partial differential equation utifigi
functional programming is made possible. Therefore we liexeloped a DSEL approach for a mathematical
equation specification based on a generic topology libratyZ25].

This work examines the performance aspects of our DSEL w#pect to runtime on various computer systems
and the influence of different compiler versions. The lamguaf choice is C++ due to the possible high execution
speed of the compiled code [26] and the support of differeagymmming paradigms, such as object oriented,
generic (GP), functional (FP [5, 6, 17]), and meta-prograngtMP [2]). It has also been shown that C++ supports
the development of efficient and high performance libracigsable of handling complex topics such as graph
treatment [8, 9, 22] unlike pure functional programminggaages like Haskel or ML.



2. Motivation

The performance of computer systems with respect to a getesf applications depends on numerous factors and
can not be attributed only to the speed of the central protgssit (CPU). Among the most important factors
is the connection of the CPU to the computers main memoryN&turally the focus of the evolution of CPUs
was to increase their processing speed. This goal was gesd#dd and in fact only made possible by continuous
downscaling of the dimensions of the devices are built onis @ownscaling of the densely packed logic found
in CPUs made it possible to attain ever higher clock speegtelly increasing their maximum performance. The
main effect for random access memory (RAM) modules, on therdtand, was to increase their sizes, again by
an ever growing level of integration.

This trend of increasing clock speeds, especially of CPds,diready led to the problem that CPUs require data
at a faster rate than memories are able to supply it. Thisdmdted in the development of memory hierarchies
introducing several levels of caches and instruction sl thereby increasing the overall performance of the
systems.

From a software point of view, new paradigms such as OO, GRadPMP are now available and can even be
used together. The non-trivial and highly complex scenairgxientific computing yields itself exceptionally well
to the combination of these different programming paradigwith respect to their advantage. The features of
meta-programming offer the embedding of domain specifingeaind mechanisms directly into the language as
well as compile-time algorithms to obtain an optimal ruméi The generic programming paradigm establishes
homogeneous interfaces between algorithms and datasaatvithout subtyping polymorphism. Functional
programming eases the specification of equations and akeendable expressions while retaining the functional
dependence of formulae due to higher order functions.

The unique way parametric polymorphism s realized in C+8] fhakes it possible to write compile time libraries,
that enable an optimization across the boundaries of ttesgiés, thereby reaching new performance optima, at
the expense of increased compile time. This has already temonstrated in the field of nhumerical analysis
yielding figures comparable to Fortran [15, 26], the preglpundisputed candidate for this kind of calculations.

Current compilers have to utilize all these features to gegrehe most efficient code.

Generic Library Approach

First, we will focus on the advantages of a generic topoldgyty that includes all classes and algorithms for the
most important topological cell complex types such as sexphd cuboid types.

This library is based on all the requirements extracted ftloenapplications developed at our institute. It greatly

reduces the applications development and the informatimessary to construct them. It accomplishes this by
storing topological data and entering a formal interfacecfration [12, 25]. It provides incidence traversal and

orientation operations with a generic interface similatiie C++ STL. Therewith algorithms and complete dis-

cretization schemes can be specified orthogonally withpeti§ying the actual topological structure. Problems

which are hard to adapt to existing libraries due to the reesicins of the underlying data structures, can be handled
easily using this library.

The second important part is based on a functional speéifichbrary [12, 20] which implements the basic fea-
tures for a mathematical domain specific language. The fapegt@n of equations with automatic derivations by
means of truncated Taylor series as well as discretizeerdiftial operators are the major parts for this library. The
library offers support for different discretization schesrembedded into a functional specification language which
offers higher-order functions. Therewith algorithms agdations are specified independently of the actual dimen-
sion, topology, and numerical data type of the cell compjget We have already shown with simple equations
such as the Laplace equation as well as some more soplesticeamples (e.g. the drift-diffusion semiconductor
equations) [11] that our approach overcomes most of therBioa-dependent and data structural problems.

To briefly introduce our DSEL approach for scientific compgtiwe present an example from the users point
of view. A typical representative of a 0-cell complex is tlogalogical structure of a simple array. The C++

STL containers such as vector or list are representativésaenschematically depicted in Figure 1 . The points
represent the cells on which data values are stored wheiga®R2 presents a 1-cell complex type with different
dimensional traversal mechanisms. The red arrows higitlighactual topological traversal mechanisms.
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Figure 2: Topological traversal of cells and incident vertices of k ce

Based on this traversal mechanisms, a transformation ahplsidiscretized equation to C++ code (DSEL) is
straightforward and is explained in more detail in the nedtion. Here we present an example of the Poisson
equation with a finite volume discretization scheme [16, Zhjis equation can be formulated as:

Poisson equation with our DSEL

equation =
(
sunxvertexedge>
[
diff <edgevertex>[pot] x Ald =x
sunkedgevertex>[epsilon] / 2
I —aqa
)(vertex);

The termpot represents the distributed potentiathe Voronoi aread the distance of two points from each other,
g the charge, andpsi | on the permittivity. It is important to stress that all quaietithave to be evaluated in their
proper context (data locality), thatjp®t , epsi | on, andq on vertices and\, d on the corresponding edges.

3. DSEL Approach

This section presents the topological traversal approachtide DSEL mechanism in more detail. The main
aspect of our DSEL in C++ is the achievement of an efficient teagescribe complex equations supported by a
comprehensive topological traversal mechanism. By fomimg the topological access to different cell complex
types, the DSEL mechanism offers itself to specify expmessand even complete equations in C++ directly.

Topological Traversal

To map a continuous problem to the regime of finite computatgpace must be divided into a finite cell complex
C. Our topology approach extends the C++ STL standard cargimhich can be represented as a 0-cell and the
topological structure of a graph which can be representes gell complex type to a multi-dimensional cell
complex type with the following geometrical representasifor the corresponding cells:

- 0-cell: vertex

- 1-cell: edge

- 2-cell: triangles, quadrilaterals

- 3-cell: tetrahedra, cubes

- 4-cell: hyper-tetrahedra, tesseract

The iterator concept, which is one of the key elements of the ETL, separates the actual access to data struc-
tures from algorithms. On the other hand, it combines itenaftopological traversal) and data access. This fact
complicates the classification of iterator types and vatwess requirements [3].



Whereas graph algorithms use vertices and edges to stonétigsa the numerical methods employed in the field
of scientific computing require a more general approacherfific computing strongly depends on the arbitrary
location of data which means that quantities can be attached to arbitragctd$uch as vertices, edges, or triangles.
Our topological traversal [3] is completely separated fractual access to data and is used as the underlying
mechanism to obtain consistent access to data. This sepatakes care of several well known problems of
C++ [3] and suits itself well for the use of lightweight obje¢23] as it offers great opportunities to store various
guantities on all topological objects.

The following code snippet shows the traversal of a dataatra with the topological structure of a 1-cell complex
(graph). The separation of topological traversal and detess can clearly be observed. The traversal of the
attached vertices to a cell can also be observed at the bptdrof the code snippet. We use the well known name
iterator for the traversal mechanism instead of the proposed rcanser.

Generic topological traversal

typedef topology<cv_container ,simplex,* t_t;

topology_traits<t_t >::iterator it;
typedef quantity<scalar , double> quant;
guantity_traits<quantt >::value value ;

t_t container;
it = container.vertexbegin ();
guant quan(container ,"key”);

++it; /1l traversal
value = quan¢it); /] access
cell_on_vertex.iterator covitit);
while (covit.valid ())
{

/] operate on cell

++covit;

}

Equation Specification

Our approach takes care of accessing quantities of difféoerlity e.g. quantities on vertices, edge, facets, or
cells. The access mechanism, based on a property map cd@c2s}l is initialized with a domain, which is an
instance of a cell complex. During initialization, the peoty mappot is bound to a specific domain with its
guantity key. In the following exampl@ot is simply assigned a value:

Quantity assignment

string key.pot = "MyBuiltinPotential”;
quant pot = scalarquan (domain, keypot);

for_each ( domain.vertexbegin (), domain.vertexend(), pot = 1.0 );

Based on the functional programming approach supportetdBbost phoenix library [6] a simple specification
of equations is possible. With our topological traversathaisms and generic functions the Laplace equation
can be specified in the following way:

Laplace finite volume discretization

for (vit = container.vertexbegin (); vit I= container.vertexend (); ++vit)

{

equation = (sumvertexedge>

[

diff <edgevertex> [pot]

D(xvit);




Thesumanddi f f represents generic functions specialized for the field igngific computing. The complete
equation is examined at compile-time to construct the cetetructure of the equation. The complex resulting
from this mapping is completed by specifying the currerntyated vertex objectsvi t at run-time which clearly
demonstrates the compile-time and run-time border.

4. Performance Analysis

This section analyzes the performance behavior of our DS¥ltdpological traversal and equation specifica-
tion. First, the topological traversal mechanisms are amegwith a 0-cell complex implementation without any
generic approach and a 1-cell complex type with the Boogifgliarary.

For the functional equation specification, the Blitz++ Hemerk is used to estimate the overall performance be-
haviour of our computer systems. Afterwards, simple veatitition are compared on different computer systems
and with different compiler versions. The influence of theuatcomputer system as well as the compiler used
with the corresponding optimization switches are presknte

To show the maximum of achievable performance differentmater systems are summarized in the following
table showing the CPU types, amount of RAM, and the compilsesd. A balance factor (BF) is evaluated
by dividing the maximum MFLOPS measured by ATLAS [27] by theximum memory band width (MB) in
megabytes per second measured with STREAM [7]. This fatabes the relative cost of arithmetic calculations
compared to memory access.

CPUtype RAM GCC MFLOPS MB/s Balance factor

P4,28GHz 2GB 4.0.3 23109 3045.8 0.7
AMD64,2.2GHz 2GB 3.4.4 3543.0 2667.7 1.2
IBMP655,8x1.5GHz 64GB 4.0.1 16361.7 4830.4 3.4
G5,4x2.5GHz 8GB 4.0.0 24434.0 32133 7.6

Topological Traversal

To investigate the abstraction penalty of our generic codeanalyze a simple C implementation without any
generic overhead compared to our topological environnidm. next code snippet presents the C source code for
a three dimensional 0-cell complex (cube):

C approach for O-cell traversal
for (i3 = 0; i3 < sized3; i3++)
for (i2 = 0; i2 < sized2; i2++)
for (il = 0; il < sizedl; il++4)

{
/] operations
/l use il, i2, i3
}
Generic approach for 0-cell traversal
vitl = container.vertexbegin ();
vit2 = container.vertexend ();
for (;vitl != vit2; ++vitl)
{

/] operations
/] use xvitl

}

Figure 3 presents results of four computer systems. As caadre the performance is comparable on all different
systems without incurring abstraction penalty of the higigneric code compared to a simple C implementation.

To provide a more complex example, we compare the travemsehamisms of the BGL data structures to our own
approach. The following code snippets present the correpg implementations.
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Figure 3: 0-cell traversal on the following computer systems (frofhtie right): P4, AMD64, G5, and IBM.

BGL incidence traversal

typedef adjacencylist<vecS, vecS Graph;
Graph gr(numberof_points);

/1 edge initialization
graphtraits<Graph>::edge.iterator ei, eiend;

for (tie(ei, ei_end) = edges(gr);
ei != ei_end; ++ei)
{

test.sourcel += source«ei, gr);
testsource2 += target{ei, gr);

}

Generic approach for incidence traversal

typedef topology<cv_container ,simplex,®* t_t;
t_t container(numberof_points);
/I cell initialization

typedef topology_traits<t_t >::cell_on_vertex_.iterator covitt;
covit.t covit = covit_it(xcontainer.vertexbegin ());

while (covit.valid ())

{

test.sourcel+= sourcescovit, container);
test.source2+= targetf{covit, container);

++covit;
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Figure 4: Incidence traversal for BGL and our approach on the follghagomputer systems (from left to right):
P4, AMD64, G5, and IBM.

Figure 4 presents the run-time results for edge on verterttsal. The overall run-time behavior of our approach
is comparable to that of the BGL.



Equation Specification

To compare different equation specification approachemalyze several techniques which are available in C++.
All approaches are compared to a hand-optimized Fortrampieimentation:

- Naive C++ implementation witet d: : vect or <T>

- Blitz++ Version 0.9

- Simple version of expression templates [2]

- C++std::val array

- Boost phoenix library (our DSEL)

The following compiler switches were used:

AMD64: —03 —march=k8 —funroll —loops —mtune=k8 —fforce—addr

P4: —O3 —march=pentium4—funroll —loops —mtune=pentium4 —mfpmath=sse—ffast—math
G5: —03 —mcpu=G5—funroll —loops —mtune=G5

IBM: —O3 —funroll —loops —mcpu=powerpc64—maix64 —pipe

The test is performed using a vector additibp = A, + A. + Ag4, evaluated with different vector sizes. Figure 5
compares the different approaches.
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Figure 5: Performance of the evaluated expression on the followingpzder systems (from left to right): P4,
AMDG64, G5, and IBM.

For vector lengths smaller than*, cache hits reveal the full computation power of the CPUgtarvectors show
the limits imposed by memory band width.

To analyse the influence and ongoing advancements in canbpdlenology, we have analysed different compiler
versions. Therewith the influence on different machinedxeaciearly separated into the system related differences
and the compiler based differences. As a base foundatiosathe Blitz++ benchmark system which uses a vector
operation (DAXPY)f = a - x + y, evaluated with different vector sizes.
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Figure 6: Blitz++ benchmark with different compiler versions: GC®AB, GCC-4.1.0, GCC-4.1.1, GCC-4.2.0
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Figure 7: Different compiler versions on the P4: GCC-4.0.3, GCCaL.GCC-4.2.0, Intel 9.0

As can be seen, the functional approach based on the BooshigHibrary performs well with recent compilers
such as the GCC-4.1.0 compiler generation. GCC-4.2.0li®sing developed at the moment and only presented
to show the possibilities of the emerging compiler generetti The Intel 9.0 compiler does not perform well with
all different specification mechanisms.

5. Conclusions

While computer performance is steadily increasing thetadil complexity of simulation models easily outgrows
this gain in computational power. It is therefore of utmasportance to employ the latest techniques of software
developmentto obtain high performance and thereby ensleiguate simulation times even for complex problems.
We created an infrastructure, that supports the formulatfalifferent problems in a highly expressive way.

The combination of high expressiveness at such an excg@léfdrmance characteristic is only possible by using
all the facilities provided by C++. Currently no other large offers sufficient support for all the necessary
programming paradigms to enable this high level abstractidghis run-time speed.
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