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Abstract
In the field of scientific computing there is a manifold of software applications and tools available which pro-
vide methods and libraries for the solution of very specific problem classes [1, 13, 15, 22, 26]. They are mostly
specialized on a certain type of underlying mathematical model resulting in a solution process which is highly pre-
dictable. We have designed a topological library [11] whichenables the development of an equation specification
mechanism for all different kinds of discretized partial differential equation by utilizing functional programming.
This work examines the performance aspects of our domain specific embedded language (DSEL) approach for
mathematical equation specification.

1. Introduction

Our institute has gained profound experience in developingand releasing scientific code [4, 10, 19]. The software
products in the list below represent the chronological output of the institute’s research and development activities
over more than a decade (OO: object oriented):

S*AP Two- and three-dimensional interconnect simulator (imperative)
MINIMOS-NT Two- and three-dimensional device simulator (imperative,OO)
SIESTA Framework for various simulators and optimization (OO)
FEDOS A three-dimensional PDE solver (OO)
WSS Object-oriented geometrical and topological library (OO)

With this steady evolution of software tools, the shift and change of programming paradigms can be clearly ob-
served. In the first years at our institute, only one and two-dimensional data structures with so called structured
topology cell types were used due to the limited resources ofthe computer. The structured programming paradigm
was sufficient for this type of task [10]. With the improvement of computer hardware and the developing object-
oriented programming paradigm, the shift to more complex data structures such as unstructured three-dimensional
simplex and cuboid cell complex types was possible. The development of complex applications for process [4]
and device [14] simulation are examples for this evolutionary path. All of the applications developed at our insti-
tute use very specialized data structures for describing triangles, quadrilaterals, tetrahedra, cuboids with different
mechanisms for access, traversal operations, and data storage. The most basic reason for this is the fact, that due to
the assembly of large linear equation systems, any overheadfrom generic data structures would increase the long
simulation run-times drastically.

Nowadays, the simulation requires different dimensions, different topological cell complex types, different nu-
merical treatment, orthogonal module usage, and numericalmethods employed in discretization, interpolation, or
optimization. These methods make use of highly nonlinear functionsfx(x) which can consist of several coupled
differential equations. Therefore the field of scientific computing requires an efficient and sufficient notation of
equation systems, has to construct equations and has to abstract the topological traversal of different underlying
objects. By enforcing a unique and generic interface to all different kinds of topological cell types and a new
type of equation specification mechanism for all different kinds of discretized partial differential equation utilizing
functional programming is made possible. Therefore we havedeveloped a DSEL approach for a mathematical
equation specification based on a generic topology library [11, 25].

This work examines the performance aspects of our DSEL with respect to runtime on various computer systems
and the influence of different compiler versions. The language of choice is C++ due to the possible high execution
speed of the compiled code [26] and the support of different programming paradigms, such as object oriented,
generic (GP), functional (FP [5, 6, 17]), and meta-programming (MP [2]). It has also been shown that C++ supports
the development of efficient and high performance librariescapable of handling complex topics such as graph
treatment [8, 9, 22] unlike pure functional programming languages like Haskel or ML.



2. Motivation

The performance of computer systems with respect to a given set of applications depends on numerous factors and
can not be attributed only to the speed of the central processing unit (CPU). Among the most important factors
is the connection of the CPU to the computers main memory [7].Naturally the focus of the evolution of CPUs
was to increase their processing speed. This goal was greatly aided and in fact only made possible by continuous
downscaling of the dimensions of the devices are built on. This downscaling of the densely packed logic found
in CPUs made it possible to attain ever higher clock speeds thereby increasing their maximum performance. The
main effect for random access memory (RAM) modules, on the other hand, was to increase their sizes, again by
an ever growing level of integration.

This trend of increasing clock speeds, especially of CPUs, has already led to the problem that CPUs require data
at a faster rate than memories are able to supply it. This has resulted in the development of memory hierarchies
introducing several levels of caches and instruction pipelines, thereby increasing the overall performance of the
systems.

From a software point of view, new paradigms such as OO, GP, FP, and MP are now available and can even be
used together. The non-trivial and highly complex scenarioof scientific computing yields itself exceptionally well
to the combination of these different programming paradigms with respect to their advantage. The features of
meta-programming offer the embedding of domain specific terms and mechanisms directly into the language as
well as compile-time algorithms to obtain an optimal run-time. The generic programming paradigm establishes
homogeneous interfaces between algorithms and data structures without subtyping polymorphism. Functional
programming eases the specification of equations and offersextendable expressions while retaining the functional
dependence of formulae due to higher order functions.

The unique way parametric polymorphism is realized in C++ [18] makes it possible to write compile time libraries,
that enable an optimization across the boundaries of these libraries, thereby reaching new performance optima, at
the expense of increased compile time. This has already beendemonstrated in the field of numerical analysis
yielding figures comparable to Fortran [15, 26], the previously undisputed candidate for this kind of calculations.

Current compilers have to utilize all these features to generate the most efficient code.

Generic Library Approach

First, we will focus on the advantages of a generic topology library that includes all classes and algorithms for the
most important topological cell complex types such as simplex and cuboid types.

This library is based on all the requirements extracted fromthe applications developed at our institute. It greatly
reduces the applications development and the information necessary to construct them. It accomplishes this by
storing topological data and entering a formal interface specification [12, 25]. It provides incidence traversal and
orientation operations with a generic interface similar tothe C++ STL. Therewith algorithms and complete dis-
cretization schemes can be specified orthogonally without specifying the actual topological structure. Problems
which are hard to adapt to existing libraries due to the resctrictions of the underlying data structures, can be handled
easily using this library.

The second important part is based on a functional specification library [12, 20] which implements the basic fea-
tures for a mathematical domain specific language. The specification of equations with automatic derivations by
means of truncated Taylor series as well as discretized differential operators are the major parts for this library. The
library offers support for different discretization schemes embedded into a functional specification language which
offers higher-order functions. Therewith algorithms and equations are specified independently of the actual dimen-
sion, topology, and numerical data type of the cell complex type. We have already shown with simple equations
such as the Laplace equation as well as some more sophisticated examples (e.g. the drift-diffusion semiconductor
equations) [11] that our approach overcomes most of the dimension-dependent and data structural problems.

To briefly introduce our DSEL approach for scientific computing, we present an example from the users point
of view. A typical representative of a 0-cell complex is the topological structure of a simple array. The C++
STL containers such as vector or list are representatives and are schematically depicted in Figure 1 . The points
represent the cells on which data values are stored whereas Figure 2 presents a 1-cell complex type with different
dimensional traversal mechanisms. The red arrows highlight the actual topological traversal mechanisms.



Figure 1: Topological traversal of vertices.

Figure 2: Topological traversal of cells and incident vertices of a cell.

Based on this traversal mechanisms, a transformation of a simple discretized equation to C++ code (DSEL) is
straightforward and is explained in more detail in the next section. Here we present an example of the Poisson
equation with a finite volume discretization scheme [16, 21]. This equation can be formulated as:

Poisson equation with our DSEL

e q u a t i o n =
(

sum<v e r t e x e d g e>
[

d i f f <e d g e v e r t e x>[ po t ] ∗ A/ d ∗
sum<e d g e v e r t e x>[ e p s i l o n ] / 2

] − q
) ( v e r t e x ) ;

The termpot represents the distributed potential,A the Voronoi area,d the distance of two points from each other,
q the charge, andepsilon the permittivity. It is important to stress that all quantities have to be evaluated in their
proper context (data locality), that ispot, epsilon, andq on vertices andA, d on the corresponding edges.

3. DSEL Approach

This section presents the topological traversal approach and the DSEL mechanism in more detail. The main
aspect of our DSEL in C++ is the achievement of an efficient wayto describe complex equations supported by a
comprehensive topological traversal mechanism. By formalizing the topological access to different cell complex
types, the DSEL mechanism offers itself to specify expressions and even complete equations in C++ directly.

Topological Traversal

To map a continuous problem to the regime of finite computations space must be divided into a finite cell complex
C. Our topology approach extends the C++ STL standard containers which can be represented as a 0-cell and the
topological structure of a graph which can be represented asa 1-cell complex type to a multi-dimensional cell
complex type with the following geometrical representations for the corresponding cells:

- 0-cell: vertex
- 1-cell: edge
- 2-cell: triangles, quadrilaterals
- 3-cell: tetrahedra, cubes
- 4-cell: hyper-tetrahedra, tesseract

The iterator concept, which is one of the key elements of the C++ STL, separates the actual access to data struc-
tures from algorithms. On the other hand, it combines iteration (topological traversal) and data access. This fact
complicates the classification of iterator types and value access requirements [3].



Whereas graph algorithms use vertices and edges to store quantities, the numerical methods employed in the field
of scientific computing require a more general approach. Scientific computing strongly depends on the arbitrary
location of data which means that quantities can be attached to arbitrary objects such as vertices, edges, or triangles.
Our topological traversal [3] is completely separated fromactual access to data and is used as the underlying
mechanism to obtain consistent access to data. This separation takes care of several well known problems of
C++ [3] and suits itself well for the use of lightweight objects [23] as it offers great opportunities to store various
quantities on all topological objects.

The following code snippet shows the traversal of a data structure with the topological structure of a 1-cell complex
(graph). The separation of topological traversal and data access can clearly be observed. The traversal of the
attached vertices to a cell can also be observed at the bottompart of the code snippet. We use the well known name
iterator for the traversal mechanism instead of the proposed namecursor.

Generic topological traversal

t yp ed e f topo logy<c v c o n t a i n e r , s implex ,1> t t ;
t o p o l o g y t r a i t s<t t > : : i t e r a t o r i t ;
t yp ed e f q u a n t i t y<s c a l a r , double> q u a n t ;
q u a n t i t y t r a i t s<q u a n t t > : : va l ue va lue ;

t t c o n t a i n e r ;
i t = c o n t a i n e r . v e r t e xb e g i n ( ) ;
q u a n t quan ( c o n t a i n e r , ” key ” ) ;

++ i t ; / / t r a v e r s a l
va lue = quan (∗ i t ) ; / / a c c e s s
c e l l o n v e r t e x i t e r a t o r c o v i t (∗ i t ) ;
whi le ( c o v i t . v a l i d ( ) )
{

/ / o p e r a t e on c e l l
++ c o v i t ;

}

Equation Specification

Our approach takes care of accessing quantities of different locality e.g. quantities on vertices, edge, facets, or
cells. The access mechanism, based on a property map concept[3, 24] is initialized with a domain, which is an
instance of a cell complex. During initialization, the property mappot is bound to a specific domain with its
quantity key. In the following example,pot is simply assigned a value:

Quantity assignment

s t r i n g key po t = ” M y B u i l t I n P o t e n t i a l ” ;
q u a n t po t = s c a l a r q u a n ( domain , keypo t ) ;

f o r e a c h ( domain . v e r t e xb e g i n ( ) , domain . v e r t e xe n d ( ) , po t = 1 .0 ) ;

Based on the functional programming approach supported by the Boost phoenix library [6] a simple specification
of equations is possible. With our topological traversal mechanisms and generic functions the Laplace equation
can be specified in the following way:

Laplace finite volume discretization

f o r ( v i t = c o n t a i n e r . v e r t e xb e g i n ( ) ; v i t != c o n t a i n e r . v e r t e xe n d ( ) ; ++ v i t )
{

e q u a t i o n = ( sum<v e r t e x e d g e>
[

d i f f <e d g e v e r t e x> [ po t ]
] ) ( ∗ v i t ) ;

}



Thesum anddiff represents generic functions specialized for the field of scientific computing. The complete
equation is examined at compile-time to construct the complete structure of the equation. The complex resulting
from this mapping is completed by specifying the currently iterated vertex objects*vit at run-time which clearly
demonstrates the compile-time and run-time border.

4. Performance Analysis

This section analyzes the performance behavior of our DSEL for topological traversal and equation specifica-
tion. First, the topological traversal mechanisms are compared with a 0-cell complex implementation without any
generic approach and a 1-cell complex type with the Boost graph library.

For the functional equation specification, the Blitz++ benchmark is used to estimate the overall performance be-
haviour of our computer systems. Afterwards, simple vectoraddition are compared on different computer systems
and with different compiler versions. The influence of the actual computer system as well as the compiler used
with the corresponding optimization switches are presented.

To show the maximum of achievable performance different computer systems are summarized in the following
table showing the CPU types, amount of RAM, and the compilersused. A balance factor (BF) is evaluated
by dividing the maximum MFLOPS measured by ATLAS [27] by the maximum memory band width (MB) in
megabytes per second measured with STREAM [7]. This factor states the relative cost of arithmetic calculations
compared to memory access.

CPU type RAM GCC MFLOPS MB/s Balance factor
P4, 2.8 GHz 2GB 4.0.3 2310.9 3045.8 0.7

AMD64, 2.2 GHz 2GB 3.4.4 3543.0 2667.7 1.2
IBMP655,8x1.5 GHz 64GB 4.0.1 16361.7 4830.4 3.4

G5, 4x2.5 GHz 8GB 4.0.0 24434.0 3213.3 7.6

Topological Traversal

To investigate the abstraction penalty of our generic code we analyze a simple C implementation without any
generic overhead compared to our topological environment.The next code snippet presents the C source code for
a three dimensional 0-cell complex (cube):

C approach for 0-cell traversal

f o r ( i 3 = 0 ; i 3 < s i z e d 3 ; i 3 ++)
f o r ( i 2 = 0 ; i 2 < s i z e d 2 ; i 2 ++)

f o r ( i 1 = 0 ; i 1 < s i z e d 1 ; i 1 ++)
{

/ / o p e r a t i o n s
/ / use i1 , i2 , i 3

}

Generic approach for 0-cell traversal

v i t 1 = c o n t a i n e r . v e r t e xb e g i n ( ) ;
v i t 2 = c o n t a i n e r . v e r t e xe n d ( ) ;

f o r ( ; v i t 1 != v i t 2 ; ++ v i t 1 )
{

/ / o p e r a t i o n s
/ / use ∗ v i t 1

}

Figure 3 presents results of four computer systems. As can beseen, the performance is comparable on all different
systems without incurring abstraction penalty of the highly generic code compared to a simple C implementation.

To provide a more complex example, we compare the traversal mechanisms of the BGL data structures to our own
approach. The following code snippets present the corresponding implementations.
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Figure 3: 0-cell traversal on the following computer systems (from left to right): P4, AMD64, G5, and IBM.

BGL incidence traversal

t yp ed e f a d j a c e n c y l i s t <vecS , vecS> Graph ;
Graph gr ( n u m b e ro f p o i n t s ) ;
/ / edge i n i t i a l i z a t i o n
g r a p h t r a i t s<Graph> : : e d g e i t e r a t o r e i , e i e n d ;

f o r ( t i e ( e i , e i e n d ) = edges ( gr ) ;
e i != e i e n d ; ++ e i )

{
t e s t s o u r c e 1 += s o u r c e (∗ e i , gr ) ;
t e s t s o u r c e 2 += t a r g e t (∗ e i , gr ) ;

}

Generic approach for incidence traversal

t yp ed e f topo logy<c v c o n t a i n e r , s implex ,1> t t ;
t t c o n t a i n e r ( n u m b e ro f p o i n t s ) ;
/ / c e l l i n i t i a l i z a t i o n

t yp ed e f t o p o l o g y t r a i t s< t t > : : c e l l o n v e r t e x i t e r a t o r c o v i t t ;
c o v i t t c o v i t = c o v i t i t ( ∗ c o n t a i n e r . v e r t e xb e g i n ( ) ) ;

whi le ( c o v i t . v a l i d ( ) )
{

t e s t s o u r c e 1 += s o u r c e (∗ c o v i t , c o n t a i n e r ) ;
t e s t s o u r c e 2 += t a r g e t (∗ c o v i t , c o n t a i n e r ) ;

++ c o v i t ;
}
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Figure 4: Incidence traversal for BGL and our approach on the following computer systems (from left to right):
P4, AMD64, G5, and IBM.

Figure 4 presents the run-time results for edge on vertex traversal. The overall run-time behavior of our approach
is comparable to that of the BGL.



Equation Specification

To compare different equation specification approaches we analyze several techniques which are available in C++.
All approaches are compared to a hand-optimized Fortran 77 implementation:

- Naive C++ implementation withstd::vector<T>
- Blitz++ Version 0.9
- Simple version of expression templates [2]
- C++std::valarray
- Boost phoenix library (our DSEL)

The following compiler switches were used:

AMD64: −O3 −march=k8− f u n r o l l −l oops −mtune=k8 − f f o r c e−addr
P4 : −O3 −march=pent ium4− f u n r o l l −l oops −mtune=pent ium4 −mfpmath= s s e− f f a s t−math
G5 : −O3 −mcpu=G5− f u n r o l l −l oops −mtune=G5
IBM : −O3 − f u n r o l l −l oops −mcpu=powerpc64−maix64 −p ipe

The test is performed using a vector additionAf = Ab + Ac + Ad, evaluated with different vector sizes. Figure 5
compares the different approaches.
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Figure 5: Performance of the evaluated expression on the following computer systems (from left to right): P4,
AMD64, G5, and IBM.

For vector lengths smaller than104, cache hits reveal the full computation power of the CPU, longer vectors show
the limits imposed by memory band width.

To analyse the influence and ongoing advancements in compiler technology, we have analysed different compiler
versions. Therewith the influence on different machines canbe clearly separated into the system related differences
and the compiler based differences. As a base foundation we use the Blitz++ benchmark system which uses a vector
operation (DAXPY)f = α · x + y, evaluated with different vector sizes.
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Figure 6: Blitz++ benchmark with different compiler versions: GCC-4.0.3, GCC-4.1.0, GCC-4.1.1, GCC-4.2.0

Finally, we compare our vector addition benchmark on the P4 with different compilers.
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Figure 7: Different compiler versions on the P4: GCC-4.0.3, GCC-4.1.0, GCC-4.2.0, Intel 9.0

As can be seen, the functional approach based on the Boost phoenix library performs well with recent compilers
such as the GCC-4.1.0 compiler generation. GCC-4.2.0 is still being developed at the moment and only presented
to show the possibilities of the emerging compiler generations. The Intel 9.0 compiler does not perform well with
all different specification mechanisms.

5. Conclusions

While computer performance is steadily increasing the additional complexity of simulation models easily outgrows
this gain in computational power. It is therefore of utmost importance to employ the latest techniques of software
development to obtain high performance and thereby ensure adequate simulation times even for complex problems.
We created an infrastructure, that supports the formulation of different problems in a highly expressive way.

The combination of high expressiveness at such an excellentperformance characteristic is only possible by using
all the facilities provided by C++. Currently no other language offers sufficient support for all the necessary
programming paradigms to enable this high level abstraction at this run-time speed.
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