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Abstract— Coherent transport in mesoscopic devices is well Il. THE PHYSICAL MODEL

described by the Schbdinger equation supplemented by open . . .
boundary conditions. When electronic devices are operatect Quantum transport is modeled by a time-independent, one-

room temperature, however, a realistic device model needsot €lectron Wigner equation for a multi-valley semiconductor
include carrier scattering. In this work the kinetic equation The set of Wigner equations is coupled through the intdeyal
for the Wigner function is employed as a model for quantum phonon scattering terms.

transport. Carrier scattering is treated in an approximate manner

through a Boltzmann collision operator. A Monte Carlo technique 1

for the solution of this kinetic equation has been developed 7 (kav(k) Ve +F(r)- Vk) fo(k,r) =

based on an interpretation of the Wigner potential operatoras a

generation term for numerical particles. Details on the algrithm Z /[1 — Ok, 1)] S (k, k) for (K, ) 3K/
for particle generation and subsequent particle annihilaton are - v T ’
presented. Including a multi-valley semiconductor model ad Y

a self-consistent iteration scheme, the described Monte @a 0 ' 3.
simulator can be used for routine device simulations. Applations - <Z /[1 — for (K, 1)]Sur (K k) A" ) fo(k, )
U/

to single barrier and double barrier structures are presened.
+/Vw(k — K, r)f, (K r)d*K
I. INTRODUCTION Silicon: v, v' = [100], [010], [001] 1)

This equation determines the Wigner functign for valley

For FETs with gate lengths below 10 nm quantum effects A valley’s energy dispersion relation, (k) is assumed to
such as direct source-to-drain tunneling become impogadt be anisotropic and parabolic. Note that a non-parabgks
start affecting the device characteristics [1]. Recentlisti relation in the single-electron Hamiltonian would give ano
show that scattering will still affect the current [2] andath |ocal diffusion term of the form[ é(k,r — 1) £, (k,r/)d>".
the transition to ballistic transport appears at much gn@ate Although it is straightforward to use a non-parabolic riefat
lengths than previously anticipated [3]. An accurate thesir in (1), one should be aware that this would approximate the
MOSFETs near the scaling limit must therefore account f@fon-local diffusion term by a local one of the fofffke, - V.. f.
the interplay between coherent quantum effects and dissgpa A spectral decomposition of the potential profi&r) is
scattering effects. This mixed transport regime can slyitatapplied [7]. The slowly varying component gives the claaisic
be treated by the Wigner equation. Early numerical solstioforce F, whereas the rapidly varying component is taken into
of the Wigner equation were obtained using finite differenegcount through the Wigner potenti,.
methods, assuming simplified scattering models based on
the relaxation time approximation [4]. However, for retis V(r) =Va(r) + Vam(r),  F(r)=-VVa(r)
device simulation more comprehensive scattering models ar

required. With the advent of Monte Carlo (MC) methods for Vi(q,r) =

the Wigner equation [5], [6] it became feasible to include ’ 1 S S .

the full Boltzmann collision operator. The development of m/{VQm(r—i— 5) - qu(r — 5)} efar B
(3 7T

MC methods for the Wigner equation, however, is hampered
by the fact that, as opposed to the semi-classical case, thén (1) scattering is treated semi-classically through a8Bol
integral kernel is no longer positive. This so-called nagat mann collision operator, where the transition rate- (k, k')

sign problem will lead to exponentially growing variancds dofrom initial state(v’, k') to final statgv, k) is given by Fermi’s

the Markov Chain MC method. The Wigner potential operatgolden rule. It should be noted that usage of the Boltzmann
can also be viewed as a generation term of positive andllision operator in the Wigner equation represents soche a
negative numerical particles. In this picture the sign pFob hoc assumption. A rigorous treatment of electron-phonat sc
shows up in the avalanche of numerical particles generatésting would require a frequency-dependent Wigner fumgtio
A stable MC method can only be achieved by means of fdk,r,w). Itis related to the non-equilibrium Green'’s function
suitable particle annihilation algorithm. G< by G<(r,k,w) = if(k,r,w) and can reasonably be
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approximated ag (k,r,w) = fw(k,r)A(r,k,w) [8]. To arrive  particle. Since (2) is local in real space, the particle psir
at Fermi’s golden rule the spectral functichis reduced to generated at the positianof the initial particle.
the Diracé-function. _ o

Furthermore, in (1) the Pauli blocking factor the equilitoni B. Particle Annihilation
Fermi function f0 is used. The assumption of a Boltzmann Different variants of the single-particle MC method out-
collsion operator in (1) ensures that in the semiclassidiied in [S] can be devised. The variant discussed below is
regions, such as the highly doped contact regions, the ceenstructed such that current is conserved exactly. The onl
ductivity is finite and that the mean energy increase due iftput parameter required is the ratio of negative and pa@siti
degeneracy is taken into account. trajectories, which makes the algorithm easy to controke Th
idea is that from the trajectory tree generated by a particle
injected at the contact only one branch is actually traced.

A stationary MC method for solving (1) has been reported in For steady state problems considered here a phase space
[5]. The potential operatd®|f.,] = [ Vi (k—Kk') fw (K, r)d*k’ mesh can be utilized, on which numerical particles are tem-
is interpreted as a generation term of numerical particlgsorarily stored. After each generation event one has to deal
The strict mass conservation property of this operator cajith three particle states, namely the initial statand the two
be satisfied by the numerical particle model exactly if ongenerated statek, andk,. In a first step all three particles
generates the numerical particles only pair-wise, forainsé, are stored on the annihilation mesh, that is, the statistica
with statistical weightst-1 and —1. As pointed out in [5], a weight of each particle is added to a counter associated
suitable annihilation algorithm for numerical particleseds with the mesh element. Then one has to decide which of
to be introduced in order to achieve a stable MC methoghe three states is used to continue the trajectory. One may
Since one can devise various algorithms for particle geivera choose the weight of the particle continuing the trajectory
and, in particular, for particle annihilation, in the folllng the  to be of the same sign as the incoming one (Fig. 1). In
latest developments are described. this way the statistical weight along one trajectory does no
change, which results in exact current conservation. If the
} ) ) ) _initial state has a positive statistical weight, out of theee

A direct numerical representation of the Wigner potentiglesh elements one selects that with the largest stored tweigh
Viv(q,r) would require the discretization of both momenturgsontinying from that element will reduce the weight of the
and space coordinates. The problem can be simplified Bment. Conversely, a negative trajectory is to be coatinu
expressing the Wigner potential in terms16fq), the Fourier qm the element with the smallest stored weight. A certain
transform of the potential (r). The potential operator canfraction of negative trajectories needs to be constructed i

IIl. NUMERICAL METHODS

A. Particle Generation

be rewritten as follows. order to resolve the negative parts of the Wigner function.
1 . . This rule for selecting the continuing particle is an attémap
Owlfwl(k,r) = @2n)3h V()| sin[¢(a) +q-r] minimize the weights stored in the three elements after each

q q 3 pair-generation event. The repeated execution of thisirule
X (fw (k_ §’r’t) —Jw (k+ §’r’t)) d’q (2) the MC main loop results in a minimization of the stored

An advantage of this formulation is that no discretizatiothe Weight on the whole annihilation mesh. Particle annitoiati
spatial variable is needed. The expression can be evaluated!@kes place when positive and negative particles are alieln
the actual positiom of a particle. Only the momentum variableStored in the same mesh element. Note that because of the
q needs to be discretized in order to numerically repreént Mass conservation property of the transport equation and of
the modulus, ang, the phase of’. the associated particle model, no net-charge can build up on

The structure of (2) suggests the usage of a rejectiHHE annihilation mesh. The weights stored on the mesh sum up
technique. As a normalization quantity one obtains an upper

limit for the pair generation rate. =
1 O —9
max — 75 N3z 14 d3 3 - ! !
i (27T)3h/| (a)|d’q 3 O | T I |
At a rate of . the free flight of a particle is interrupted / }
to check for particle pair-generation. From the distribnti ‘
|[V(q)| one generates randomly the momentum transfer - _ =X
Then the sine function is evaluated at the actual particle 7

positionr as s = sin[¢(q) + q - r|. With probability |s| the k/
pair-generation event is accepted, otherwise a selfesaait
event is performed. In the former case, two particle states &ig. 1. The particle annihilation strategy attempts to miae the weights

. L _ stored in the mesh elements. The weights of the initial amdirmaing particle
generated with momenta; = k q/2 andk; = k + q/2 have the same sign to ensure current continuity. Particldsnzesh elements

and statistical weightsv; = wesSign(s) andws = —wi, carrying a positive weight are in black, the ones carryingegative weight
respectively, whereu, is the statistical weight of the initial are in grey.
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to zero. The local weights on the mesh have to be kept small, — 1 1 T T T 1
as they are a measure for the numerical error of the method. [ e
This can be controlled by the fraction of negative trajaewr _ 25 nm 'l.----
which has to be specified by the user. . '

Considering Fig. 1, one can develop also the following ‘\Elxlo__ .<>~"°"'°"'<>---<>---<>---<>---<>---<>---__
notion of the algorithm. Positive and negative particlessent §
through the device and interact with the annihilation mesh. ‘= 1 _
A positive particle is likely to recombine in a phase-space § I m - mWigner
region where the weight stored on the mesh is negative. This 5 51| ¢ 0 Boltzmann .
means that a positive particle is likely to propagate in ¢hos o : ;
regions where the stored weight is positive. It is unlikedy t - - 5.0 nm- ;
recombine there, because this would result in an increase in BB B B B
local weight, which would contradict the local minimizatio OI_.c....a....n.,..?....n.__.?...c...?.l.(.){;].m.
principle. For the same reason, a negative particle will be % — —6 8 10

A
attracted by regions with negative stored weight. Althotlgh Number of Iterations

transition prob{:\bilities used t.O prope_lgate the partiCI'eSFhe Fig. 2. Current through Sn-i-n diodes as a function of the number of
same for positive and negative particles, the interacti@h w self-consistent iterations with the width of the intrinsegion as a parameter.
the annihilation mesh causes the trajectories for poséive
negative particles to be systematically different.

An annihilation mesh is introduced for each valley-typer. Fo I
the three pairs of X-valleys of Si three meshes are required. 1.5+
The meshes are defined in the three-dimensional phase;space I
spanned by one spatial and two momentum coordinates.

T T T T T T T
—— Schrédinger <$
<& Wigner MC
— — Classical

C. Coupling to Poisson Equation

A self-consistent iteration scheme between Wigner MC and
the Poisson equation is implemented. The adopted scheme,
which is similar to the Gummel iteration scheme for the basic
semiconductor equations [9], is commonly used in classical
one-particle MC simulations [10]. Fig. 2 shows the iteratio
history of the current through a $+i-n diode for different [
widths of the intrinsic region. Currents computed using Néig 0 %
and classical MC show similar convergence behavior.

Normalized Current

0.1 02 _ 03 0.4
Gate Voltage [V]

1V. RESULTS AND DISCUSSION Fig. 3. Normalized ballistic currents calculated clasficand quantum
mechanically. Results from Wigner MC and the Schrodingdves are in

The described MC method can be used for routine devigeod agreement. The potential profile is obtained from acdegimulation

. . e .- . of a 10 nm gate length DG MOSFET.
simulations. For the purpose of verification, the first exemp
assumes a frozen potential profile from a 10 nm gate length
double-gate MOSFET. Fig. 3 compares the quantum ballistic
currents as obtained from a collision-less Wigner MC simulaeflected in the differencé-on— Iwic decreases with decreas-
tion and from a numerical Schrodinger solver. Good agregmeéng device length. However, even for W = 2.5nm the relative
is observed. The quantum ballistic current is higher than tlifference in the currents is still of the order of 25%, irating
classical ballistic current due to an additional contridbut that scattering cannot be neglected. Also shown is the icurre
from carriers tunneling through the potential barrier. difference due to tunnelingyc — Iste. Clearly, this current

To study the effects of scattering and tunneling on the @evicomponent rises with reduced barrier width.
characteristics we consider &ii-n diodes with the lengti’ The next example shows results of self-consistent Wigner-
of the intrinsic region ranging from 20 nm down to 2.5 nm. Thoisson simulations of a double-barrier tunneling stmecté
doping profile is assumed to increase gradually from théintr GaAs/AlGaAs resonant tunneling diode (RTD) is investigate
sic region to the highly doped contact region over the samagsuming a barrier height df;, = 0.3eV, a barrier width of
distanceW. Three transport models are compared: Wign&nm, and a well width of 5 nm [5], [11]. Polar optical phonon,
equation and Boltzmann equation with electron-phonon aadoustic deformation potential and ionized impurity sty
ionized-impurity scattering included, yielding curremkgic  are included. Fig. 5 shows the effect of degeneracy, which
andlgTeg, respectively. The Wigner equation without scattering introduced in the simulation by the approximated Pauli
inside the intrinsic and transition regions gives the aurreblocking factors in (1) and through the boundary distribati
Icon (coherent). Fig. 4 shows that the effect of scatteringt the contacts, on the current-voltage characteristics.
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Fig. 4. Relative difference between currents of raitn diode calculated Fig. 6. Mean kinetic energy of electrons in a resonant tungetliode
using different transport models: Wigner MC with and withesgattering in calculated from (5). In the tunneling barriers the mean tignenergy is
the intrinsic region (squares); Wigner MC and classical Mronds). negative.
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V. CONCLUSION

=
n
T
~
-
]

/ \ A Monte Carlo simulator performing a self-consistent nu-
merical solution of the Wigner equation has been presented.
Details of the algorithms for generation and annihilatidn o
\ numerical particles have been described. The quantum MC
% ‘&/ ; method turns gradually into the classical MC method when the
potential profile becomes smoother. Therefore, the sinomat
method can be used, for instance, to study the gradual emer-
gence of quantum effects when a device structure is scaled
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