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ABSTRACT
We present a generic library which provides means to spec-
ify partial differential equations using different discretization
schemes, dimensions, and topologies. Due to the common
interfaces for simulation domains as well as numerical alge-
bra we have an overall high inter-operability.

1. INTRODUCTION
One of the major topics in the field of scientific computing
is the solution of differential equations. The field of differen-
tial equations covers various sub-fields of varying complexity
and has different requirements on the underlying simulation
domain as well as the mathematical formalism. In the most
complex cases we face a system of coupled partial differential
equations.

As mathematical structures such as scalar fields on a simu-
lation domain do not have a direct mapping to data struc-
tures of a computer, discretization schemes and numerical
methods have to be employed. During the last decades a
vast number of different tools for the solution of differential
equations has been developed. In general, the methods that
need to be performed have not changed. Some of them have
to be used together with other techniques. Based on a data
structure which represents a cell complex, an equation sys-
tem is assembled. After the solution of the equation system
is computed the data are mapped back to the cell complex.

The main part of our work is the re-factoring and separa-
tion of the program structures needed for the discretization
as well as the assembly of differential equations. By in-
vestigating numerous tools we found that various parts of
code have been re-implemented in each of these tools. The
tediously implemented domain-specific improvements intro-
duced by each of the tools were not reusable in any way and
had to be recoded repeatedly.

Typical programs operate on two different structures, namely
a simulation domain and a matrix data structure. In the
process of re-factoring and re-organizing of available code it
is crucial to define all the external interfaces explicitly. The
formalization of topological mechanisms allows the imple-
mentation of different discretization schemes independently
from the actual representation of the topological data struc-
ture. The generic topology library (GTL) [7] provides an im-
plementation of such a data structure which can be parametrized
for arbitrary dimensions and cells.

Figure 1: Interface dependencies of discretization

schemes, solving algorithms and matrix interfaces

and the simulation domain

The interface for the simulation domain requires access to
the topological structure as well as the defined functions.
The GTL models these interfaces and provides the neces-
sary functionality to store values on the simulation domain,
which are given discretely on the single topological elements.
The topological functionality is mostly needed to fulfill the
requirements of the discretization schemes such as the finite
element method [14] or the finite volume method [12]. All of
these schemes need a set of neighboring elements based on
the topological property of incidence. Two elements are
incident if one of the sets is a subset of the other.

The formalization of matrix access mechanisms for the use
in numerical algebra provides the inter-operability and ex-
changability needed for different solver mechanisms [8]. This
allows a comparison of different numeric algebra software
packages under the same circumstances, which is usually not
possible without a considerable amount of manual work.

There are many different interfaces [1, 8] available for the
efficient assembly of equation systems. In general the in-
terface can be reduced to only a few requirements. Even
if there are solvers available which support highly specific
storage structures such as band matrices, symmetric matri-
ces or diagonal matrices, using different compressed matrix
formats, the basic operations of the solvers are the same.
The main problem of all of these solution mechanisms is
the lack of a high level standard interface which reduces the
detail of knowledge required by the end user.

We present a simple interface which makes the internal ma-
trix structure completely interchangeable and due to orthog-
onality of the concepts we can reduce this effort of interfac-
ing from O(m× n) to O(m+ n). The generic discretization
library (GDL) introduces interfaces and makes them appli-
cable to a huge number of problems. Its main aims are to
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formalize the way of discrete mathematical formula speci-
fication and to provide a formalized way of coding mathe-
matical expressions.

The intended range of applications covers typical PDE meth-
ods as encountered in electrodynamics, mechanics, diffusion
processes, fluid mechanics, and chemical reactions as well as
typically discrete phenomena such as particle dynamics or
even graph based problems.

The main focus of the design of the GDL was spent on spec-
ifying the mathematical formalisms. There have been ap-
proaches towards domain specific languages in this field [9,
2, 3, 11] but most of them are very specific and only work
in special cases such as finite element or finite volume dis-
cretization schemes. We construct the base framework of
topological operations, which covers different discretization
schemes as well as purely discrete phenomena.

2. REQUIREMENTS RESULTING FROM
DISCRETIZATION SCHEMES

The main aim of discretization schemes is to yield a numeric
representation of a differential equation by projecting it onto
a discrete simulation domain. Typically, the discretization
of differential equations is achieved on elements of an un-
derlying cell complex, e.g. on vertices. This results in an
algebraic equation being assembled for each of the discrete
elements of the complex. The assembled algebraic equations
do not only involve values on single vertices, but also depend
on neighboring elements. It is therefore impossible to solve
the equations at each vertex locally and a set of coupled
equations is obtained.

The discretization schemes we have investigated are the fi-
nite element method, the finite volume method, and as spe-
cialized case the finite difference method [13]. In particular,
we show the different iteration mechanisms necessary for
implementation.

The finite element method uses shape functions on the high-
est dimensional elements. Each global shape function is lo-
cated on a vertex. Therefore shape-functions have non-zero
values in all cells containing this vertex. The main aim of
this discretization scheme is to find a weighted residual for-
mulation. For the formulation of this discretization scheme
the following operations have to be performed.

On all cells (c) in Neighborhood(v)

On all vertices (w) in Neighborhood(c)

...

Finite volume schemes and finite difference schemes as well
as the required topological iteration mechanisms are dis-
cussed in [4].

3. EXTERNAL INTERFACES
The main topological requirements on the simulation do-
main is an iteration over incident elements. A typical ex-
ample of such an iteration is to find all incident edges of
a vertex or vice versa. These operations use iterator-like
structures [7] for all permutations of different topological
elements. Apart from incidence and iteration, discretiza-
tion schemes need the property of orientation. All elements
have a standard orientation, e.g. an edge provides a source

Figure 2: Orientation of an edge. The orienta-

tion function returns either +1 or −1 depending on

whether the vertex is the sink or the source of the

edge.

and a sink vertex. We define an orientation function O(a, b)
between an edge and a vertex which returns +1 if a ver-
tex coincides with the source and −1 if the vertex coincides
with the sink (Figure 2). A full reference of the topological
iteration possibilities can be found in [7].

An interface to linear solvers has to provide several opera-
tions like the solution of a linear equation system, the inver-
sion of a matrix or the retrieval of eigenvalues. Non-linear
solver mechanisms are usually based on linear solvers and
therefore can be matched to this interface.

All of these methods have in common that they are capable
of handling matrices covering an arbitrary number of entries.
At the time of initialization of the matrix data structure,
the number of rows and columns of the matrix as well as
the number of right hand side vectors has to be specified.
In order to define the 10 × 10 matrix structure for a linear
solver with three right hand side vectors we call the following
constructor.

matrix_t msi(10, 3);

All matrix elements can be accessed by a function object.
This interface can be used in order to obtain the values of
the right hand side, the solution, eigenvalues or eigenvectors.

matrix_t::entry_accessor entry(msi);

matrix_t::rhs_accessor rhs(msi);

entry(0, 1) = 12.5;

rhs(2, 2) = 3.4;

Algorithms and data structures for linear algebra can be for-
mulated independently. While simulation tools fill the en-
tries of the matrix using properties of the simulation domain
and the discretized differential equations, solver mechanisms
operate on the matrix in order to provide the solution of the
discretized problem.

4. A FUNCTIONAL CALCULUS
FOR DISCRETIZATION

We have already listed the operations which are necessary
to formulate discretization schemes. Based on the example
of the Laplace operator we introduce the notions necessary
for a fast as well as efficient implementation.

Due to space considerations we omit the means of matrix as-
sembly. However we have to state that differential equations
can be formulated using the associated differential opera-
tors. All differential equations L(f) = 0 can be represented
by their operator L(f). The underlying matrix mechanisms
can be employed to determine all entries of the discretized
differential equation and assemble the differential equations.
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For the following considerations we only show the applica-
tion of the differential operator.

4.1 Specification of Mathematical Formulae
The simplest expressions of our calculus are data which are
stored on topological elements. Each of the discrete formu-
lae has to access different values which are associated with
the topological elements.

We assume a simulation domain where values are stored on
vertices. Each vertex has one value ψ stored on it. If a
function evaluation of the expression ψ has to be performed
in a distinct vertex, we obtain this stored value.

If we limit the calculus to simple evaluations of the values
of data, it unnecessarily impoverishes the resulting calculus
without leading to a significant simplification of expressions.
However, if we can combine these expressions using opera-
tors, we obtain a huge variety of combinations which cover
a very broad range of expressions.

So far, the operations used do not differ very much from a
typical functional approach such as the Boost Lambda Li-
brary or Boost Phoenix [5]. The major difference of math-
ematical expressions occurring in discretization to typical
functional expressions is that the location of evaluation does
not change in functional expressions. In the following exam-
ple that shows the evaluation of the Laplace operator we see
that for the calculation we do not only need values on the
vertex of interest but we also have to access values within
its neighborhood. We investigate the typical finite volume
formulation of this differential operator.

div(grad(ψi)) =
X

j

ψj − ψi

di,j

· Ai,j (1)

Even though this formulation is common for finite volume
formulations, it is not directly implementable in a computer.
First and most importantly, the ranges of the sum as well as
the indices i and j are not defined explicitly. A lot of infor-
mation is implicit and is only valid within the framework of
the specific discretization scheme. For the sake of generality,
however, we can not keep domain specific notations.

There is only one iteration operation to adjacent vertices,
there are data Ai,j which seem to be evaluated on both
of these vertices. More precisely, the formulation states:
Doubly indexed data are stored on an edge (which is defined
by the vertices i and j), singly indexed data fields are located
on vertices. Even though the summation index j is specified,
the kind of iteration (namely vertex-vertex adjacency over
edges) is assumed implicitly. From the implementation point
of view this specification can only be implemented using
further assumptions.

Expression (1) can be re-organized in order to show a con-
sistent iteration scheme which allows a formulation free of
domain specific notational abbreviations. We use a sum as
well as a difference based on topological iteration. The in-
dices ve and ev denote a local neighborhood iteration from
a vertex to an edge and vice versa (3, 4). We explicitly
name the occurring topological elements, the initial vertex
is called v, the edges are called e and the vertices derived by

Figure 3: Exterior iteration loop. Starting from the

base vertex, the incident edges are determined and

traversed. The values of A as well as d are evaluated

on the edges.

Figure 4: The interior iteration loop. The vertices

which are incident with the edges are used for data

access.

iteration are called w.

div(grad(ψ(v))) =
X

ve(v,e)

A(e)

d(e)
∆ev(e,w)ψ(w) . (2)

Even though this formulation provides explicit naming of the
topological elements we can see that this is not necessary for
most of them. In the outer sum the data accessed are located
only on e, in the difference the data accessed are located only
on w. Even though the accessed data are not always located
on the actually traversed element, this holds true in most of
the cases. Therefore we implicitly access the element that is
actually being traversed in the innermost loop. This allows
us to reduce our formulation without losing generality.

div(grad(ψ)) =
X

ve

A

d
∆evψ . (3)

However, the difference of elements is directly connected to
the order in which the elements are traversed. Due to the
fact that the implementation of the cell complex is based
purely on topological neighborhood information, the order is
completely free and the subtractions may be performed in an
arbitrary order. We overcome this problem by generalizing
the difference to more general summation processes using
appropriate multiplicative factors to determine if a value
has to be added or subtracted.

In order to define the sign, we use the orientation function
O(a, b), (see Section 2) which is passed to the edge as well as
the vertex (Figure 2). As a consequence we have to access
the edge and pass it to the orientation function. As the edge
orientation function uses the edge which is not the element
of the innermost loop, we have to use an explicit name e.

div(grad(ψ)) =
X

ve

A

d

X

ev(e,w)

ψ · O(e,w) . (4)
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With this calculus we can handle a wide range of mathe-
matical formulations which orthogonally use the methods
of topological iteration and conventional functional expres-
sions.

5. APPLICATIONS
This section describes the basic structure of a generic dis-
cretization library as well as its application to differential
equations using different discretization schemes. Based on
the functional calculus we establish a set of functional ex-
pressions to specify arithmetic operations and function ap-
plication to data in combination with topological iteration
methods. We provide a few basic examples which show the
application of the mentioned discretization schemes.

5.1 Finite Volumes
We show a possible procedural implementation of the Laplace
operator first. It uses iterators which are gradually replaced
by a functional approach in order to obtain a formulation
which is close to the expression.

Using a purely generic approach with functional elements
for data access applied to (4) yields:

double laplacian;

vertex_edge veit(v);

for(; veit.valid(); ++veit) {

double inter = 0;

edge_vertex evit(*veit)

for(; evit.valid(); ++evit) {

inter += psi(*evit) * Orient(*evit, *veit);

}

inter *= A(*veit) / d(*veit);

laplacian += inter;

}

Conventional formula assembly using loops and accumula-
tion implies the use of loop counters or iterators, as well as
intermediate results, which are avoided in the mathematical
formulation. We explicitly need to name the iterators evit,
veit as well as the variable inter. This does not only force
us to find names for these variables in each implementation
but also introduces redundant information.

Apart from this fact, we can see that in most cases we only
need the iterator of the innermost loop explicitly. This en-
ables us to condense the formulation using function objects
which provide accumulation in combination with topological
iteration. For the sake of simplicity we omit the orientation
function at this point.

sum<vertex_edge>(ZERO)[

A(_1) / d(_1) * sum<edge_vertex>(ZERO)[

psi(_1) ]]

(v);

Although this formulation does not cover the complete infor-
mation, the expression already contains the semantic infor-
mation of the original formula. In contrast to the Phoenix
2 library we use the unnamed function object 1 for the el-
ement of the innermost loop. This means, that in the outer
sum 1 denotes the edge, whereas in the inner sum 1 de-
notes the vertex.

Indeed, there are two significant problems with this formu-
lation: First, the return value of functions is hard to deter-
mine, because it is not given explicitly. In addition, more
general accumulation routines require some kind of neutral
value to start the accumulation. For this reason, we explic-
itly insert the neutral element, in our case ZERO. As there
are many kinds of accumulation operations (sums, products,
all, exist) the value can not be coupled to the type but has
to be specified explicitly.

The second problem arises when we introduce the orienta-
tion function. Even though such a function can be made
available as a functional expression, the second argument,
namely the edge is not available directly. In analogy to the
Phoenix library we use a named variable e to keep the local
element available in the inner loops. These local variables
are passed to the function objects using the local calling
stack.

laplacian = sum<vertex_edge>(ZERO)[

A(_1) / d(_1) * sum<edge_vertex>(ZERO, _e)[

psi(_1) * Orient(_1, _e) ]]

(v);

This functional expression is equivalent to the mathematical
formulation (4) and transforms the semantics into the C++
programming language.

5.2 Finite Elements
The finite element scheme uses an integral formulation in
order to assemble partial differential equations. For each
two points belonging to a common cell C (e.g. a triangle)
an integral is evaluated. This integral determines a local
summand for the differential operator.

sum<vertex_cell>(ZERO, _v)[

sum<cell_vertex>(ZERO, _c)[

psi(_1)*int(_c, _1, _v) ]]

(v);

All finite element formulations using shape functions which
are located on the vertices can be re-formulated in this man-
ner. For higher order finite elements, this method can be
easily generalized to general neighborhood operations.

All equation-specific properties of the formulation can be en-
capsulated in the term int( c, 1, v). The integral term
returns the value of an integral, where L is the given differ-
ential operator

int(C, i, j) :=

Z

C

Lψi(x) · ψj(x) · dV . (5)

The arguments passed to this term are the cell which is
the domain of integration. This integral formulation can be
evaluated either using an analytical formula or numerically.
After the integrals are evaluated and the resulting linear
equation is evaluated, it is entered into the global matrix.

6. IMPLEMENTATION
The GDL is based on the Phoenix2 library and excessively
uses the interfaces provided there. The GDL provides three
different kinds of function objects: Data accessors, functions
and accumulators. We briefly show how accumulation is
implemented using the Phoenix2 library. Data accessors are
used in formulae in order to access values which are stored
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with respect to a topological element. These accessors can
be adapted to the underlying property map and do not use
topological features.

In the accumulation objects, topological information is com-
bined with information of the data stored. We show the
implementation of the following line.

sum<IteratorTag>(Initial)[Summand]

First, we use several object generators in order to beautify
the code and to save manual effort for explicitly coding data
types. For the implementation as Phoenix2 objects, we pro-
vide a class which implements a function eval as well as a
meta-function apply which returns the return type of eval

depending on the arguments passed.

The evaluation function requires the so called environment,
which contains function arguments, as well as further objects
for the summand and for the initial value, which are also
implemented as Phoenix 2 data structures. In the following
implementation, the types of the variables are omitted due
to space considerations.

We obtain the first element of the passed environment and
construct a GTL style iterator. Then we initialize the result
value with the result value of the function object init. In
the next snippet, we perform the iteration combined with
the evaluation of the summand.

eval(Env & env, Initial & init, Summand & summand)

{

base_elem(at<0>(env.args));

Iterator iter(base_elem);

result = init.eval(env);

while(iter.valid()){

result += summand.eval(newenv(env, *iter));

++iter;

}

For the evaluation of the summand, we have to pass the
value of the iterator. If we use a vertex on cell iterator of the
GTL, this function is passed a cell. The summand, however,
has to be passed a vertex. For this reason we introduce
a function newenv which transforms the environment. All
other variables of the environment are preserved, only the
first variable is changed.

We briefly measure the loss of performance due to the achieved
level of abstraction. This was tested for the calculation of
a finite volume difference approximation of a Laplace oper-
ator. A three dimensional mesh is used and compared with
respect to compile time as well as run time for the functional
implementation as well as for its imperative analogon.

We found that the run time for evaluation of functional ex-
pressions was within the specified range of Phoenix2 which
is about 1 per cent. The abstraction penalty was under one
per cent. However resource use for the compilation of large
functional expressions is not negligible. The evaluation of
large functional data structures also requires large amounts
of RAM. For a more in-depth benchmark of functional struc-
tures we refer to [6].

Figure 5: Two dimensional iteration. A two dimen-

sional field of vector is iterated. The GDL provides

general access mechanisms.

7. OUTLOOK
The GDL is not restricted to the operations used in scientific
computing. Almost every branch of computer science deals
with data structures with a more complicated underlying
topology, and therefore can be reformulated to use an inter-
face which is provided by the GTL. We show applications
of this library which were not intended at the beginning but
can also be performed using the GDL.

As a typical example we show an array data type (e.g.
std::vector). If we can specify GTL style iterators which
can be easily provided for each type of array we have the
ability to access the underlying data structure via the GDL
interfaces. Even though a vector can be specified by means
of the GTL explicitly, one might have an implementation
which relies on std::vector.

Such an expression is listed in the following snippet. A vec-
tor is traversed and all its elements are summed up. This is
still possible using standard algorithms which is shown for
comparison. For this reason we use some of the GTL func-
tionality to represent the topological structure of the vector.

vector<int> vec;

sum<vector>(ZERO)[_1](vec);

accumulate(vec.begin(), vec.end(), ZERO, _1 + _2);

The following operations are not possible with standard al-
gorithms but can be specified using functional environments
like FC++ or Phoenix2 [10, 5]. We give a GDL as well
as a Phoenix2 implementation. An iteration over a two-
dimensional field is performed. (Figure 5)

vector<vector<int> > vec2;

sum<vector>(ZERO)[sum<vector>(ZERO)[_1]](vec2);

std::accumulate(vec2.begin(), vec2.end(), 0,

_1 + phoenix::accumulate(_2, 0.0,

lambda()[_1 + _2]))

In the following we show a simple example which exceeds
the power of available functional frameworks. We perform
an iteration over a container. During this iteration we accu-
mulate the product of the values stored in the N elements
which are topologically closest to the initial element. The
set of these N elements is called a meta-cell (Figure 6). A
the meta cell<N> iterator of the GTL which provides the
required functionality.
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Figure 6: Metacell iteration. In this iteration the

the 2 closest elements of a given element are tra-

versed.

vector<int> vec;

sum<vector>(ZERO)[

product<meta_cell<3> >(ZERO)[_1]]

(vec);

Even though FC++ and Phoenix2 provide container access,
such operations can not be performed in an easy manner
without rewritings of some components for this special case.
Using the iteration data structures of the GTL, one can use
arbitrary subsets for accumulation or iteration.

The applicability of the GDL strongly depends on the avail-
ability of topological iteration mechanisms on the underly-
ing data structures. In most cases it is possible to establish
such a layer. If data structures model the GTL interfaces
it is also possible to specify general functional behavior via
the GDL.

8. CONCLUSION
We have shown that the presented library closes the gap
between the field of discretized equations and scientific ap-
plication development. Apart from syntactic difficulties of
C++, which complicate the formulation, the specified for-
mulae are identical. Compiler error messages with a higher
semantic level could even help the application designer to
detect problematic code.

The library offers a possibility of very compact and minimal-
istic formulation. Even though some expressions can still be
shortened, the use of the GDL reduces the effort of specifi-
cation enormously. This does not only increase the speed of
specification, but it also reduces the probability of typical
errors.

The consequent use of the library does not only lead to a
minimal effort of specification, but it also makes the pro-
grammer aware of the topological structures which are re-
quired for the discretization schemes. For this reason the
framework supports direct implementation of mathemati-
cal formulations. Programmers and mathematicians have
proved with well defined interfaces and the functional losses
resulting from the explanation of formalisms is greatly re-
duced.
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