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Abstract In TCAD environments, a proper vector
discretization in iwo or three dimensions is an imporlant
issue. Physical models like the impact ionization rate
depend on vector quantities. Two discretization methods
Jor Delaunay meshes based only on the unstructured
neighborhood information are presented. Overall good
convergence is achieved by applying these methods in a
TCAD environment for the calculation of the driving
Jorce vector as well as the current densily veclor. An
example simulation of an nMOQS transistor in snap-back
operation is presented.

1. INTRODUCTION

In TCAD simulation cnvironments the basic
semiconductor cquation sct, consisting of partial
differential equations (PDL), has to be solved using
numerical methods [1]. The spatial discretization is
described with a mesh laid over the simulation
domain. The often used drift-diffusion model
consists of three independent variables, that are the
clectrostatic potential (W) and the clectron and hole
concentrations (n and p). The box integration
method is most commonly used to describe such
problems and is also utilized in this work [2]. The
method is based on a formulation that considers
fluxes /< leaving a Voronoi box i to a neighboring
box j along a connecting edge d, via the surface
area A, (sce Fig. 1), where the flux /7 is evaluated
only with quantitics from the two neighboring
points i and j. With the summation of all those
fluxes and by using a generation term (G.) inside
the box volume V,, scalar quantities in each box 7 can
be approximated with a description similar to (1).

EJAU=G;'V1' (1

alln uigi:bm’x 7

For the calculation of this discretization, the only
geometric information necessary is the unstructured
neighborhood information. This includes a list of
all mesh points with their associated volume,
together with a conncctivity list with onc entry for
each connection where the associated distance d;
and the area A4, are stored. Because of the flexibility
of this formulation, it is independent of the problem
dimension.
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In the drift-diffusion model two types ol [luxes
are used, the dielectric flux and the electron and
hole current. The dielectric {lux is approximated
using finited differences and the current density
with the Scharfetter-Gummel discretization [3].
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Fig. 1. Voronoi box 7 of mesh point 7 with connections to
neighboring mesh points. The flux from box 7 to box j (Fj;
) through the area 4;; is depicted. The vector quantities E;
and J; are constant over the whole box i.

The system of the PDEs is commonly solved
with an iterative Newton solver. The solution
variables, i.e. W, n and p, are quantities defined at
the mesh points and are therefore known after cach
Newton iteration step. The fluxes from one box to a
neighboring box are only defined at the box
boundaries. Quantities like a ficld vector at a mesh
point ar¢ normally determined in a post-processing
step. Physical models like the carrier mobility u(F)
or the impact ionization rate G, (J,F), depend on
vector quantities F and J (driving force and current
density for electrons and holes). Since the results
form those models influence the solution variables,
the vector discretization has a considerable impact
on the simulations result and on the convergence
behavior of the Newton solver. To achieve a good
convergence behavior, it is necessary to add the
derivatives of the vectors to the Jacobian matrix,
especially when one of the named models
dominates the device functionality.

Laux proposcd a mcthod for determine the
impact ionization gencration term on  triangular
meshes [4].
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Fig. 2. Approach by S. Laux [4]: The electric field E is
constant within onc triangle and each triangle has one
current density vector J, for cach edge.

The electric field is calculated inside a triangle by a
linear interpolation of W. In contrast, the current
density inside a triangle is calculated individually
for three different regions (see J,, J, J, in Fig. 2),
by using a weighted lincar combination of the
Scharfetter-Gummel discretized currents along the
edges: Jv = Iv(J;, Ju J), v € {1, 2, 3}. For the
implementation of this scheme the triangles (in 2D)
or the tetrahedrons (in 2D) have to be stored in
addition to the unstructurcd neighborhood
information. Furthermore, a different
implementation for two- and threedimensional
meshes is required.

In this work, two approaches are presented that
assume all vector quantitics constant over the whole
box, consistent with the box integration method,
and that only depend on the unstructured
neighborhood information. They both aim to meet
the following demands:

- simple coupling with box integration method;

- exact solution for homogenous fields;

- numerical stability.

After the derivation, a short discussion of the two
approaches and a simulation of an nMOS transistor
in snap-back will be presented, because in this
operating condition the impact ionization dominates
and the processed vector quantities will
significantly influence the convergence of the
Newton iteration.

2. DERIVATION OF VECTOR
DISCRETIZATION SCHEMES

Two  derivations for  possible vector
discretizations will be given in the following. The
derivations are shown for the electric field, the
generalization to gradient based fluxes is straight
forward.

FE=-V¥ & J,=2quu,. V @,,ve {np}. (2
A. SCHEME A
The first discretization scheme defines the

projected component £ in the direction e, from the
electric field E (3), where W is the electrostatic
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potential.
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Fig. 3. Voronoi box of mesh point 0 with its neighboring
points 1-4 in a non equidistant orthogonal mesh. The
contributing ficld components £; from the edges arc
depicted.

By integrating over the box volume Vi and by
approximating the integral with a sum, £/ in box i
can be written as

1 W\,
ca _ L Gl el IO n
ES = 7 ;AH 2 e, €y (4)

where the sum includes all neighbors j, 4, is the
surface between the two boxes i and j and P, is the
electrostatic potential in v. By defining E, —

(E,:" E,y)/ , can be written as

1
E= oo 2 % By ®)
L
where d; is the distance between 7 and j (d, = |d; |
with d,= (x, = x; 3, = v)') and E; is the component of’
the electric field at the boundary between box i and j

(6)

B. SCHEME B

The second discretization scheme 1s an extension
of the finite difference method and is based on a
scheme proposed in [5]. Considering the box 0 in a
non-cquidistant orthogonal mesh depicted in Fig. 3
and its neighboring box | (not shown explicitly).
the electric field along the edge d., can be expressed
as E = —dW/d,. At the boundary between the two
boxes, i.e. the midpoint between 0 and 1, the finite
difference method results in

¥ —%

By —
01 dy,

(7)
the same result as in (6). The electric field £ in

direction ey at mesh point 0 is expressed with a
linear interpolation (8), the same procedure is done

for the component £ (9).
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An extension of this equation set, that also allows
edges not aligned with the coordinate axis is

1 X; X; - X

- X
J
= =
I ) ) 2
X=X (”‘;‘“Ai) +()’i—)i) d;

With the already specified vector Eiand with ei, =
di/dij, a closed wvector presentation can be
formulated, where the area Aj is used as a
weighting factor.
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Note that (8) and (9) are still rctained and can be
extracted by using ej = (1 0)" and ¢ij = (0 1)
respectively. Ei at the left side of (11) can be taken
out of the sum and the remaining part of the sum
results in a geometry dependent matrix, which is
calculated once in the beginning of the simulation.
This allows the convenient formulation of the final
discretization rule for a vector Vi in point i shown
in (12), using the gcometry matrix Mi (13) and the
geometry factor (14).

(10)

Vi= M7 > gie ¥, (12)
j
J
A..
gy=—i (14)

3. PROPERTIES OF THE
DISCRETIZATION SCHEMES

Both derivations are based on the unstructured
neighborhood information only, so they can be
easily coupled with the box integration method.

The second demand, the exact solution for a
homogenous fields E = E,, with the clectrostatic
potential ¥(x) = —E, - X, was verified on scheme A
(15) limited on orthogonal grids di/di € {(x1 0)',
(0£1)7}.

E; = 2—;/7;9:}‘ (‘79“8‘1'/)5/1 =Ey (13)

For scheme B a general proof was performed (16).
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The results of the discretization schemes with a
lincar clectric field E(x) = —2ax and an quadratic
clectrostatic potential 'W(x) = o was investigated in
one dimension. Using only the x-axis and the
naming convention from Fig. 3, the discretization
scheme A results in (17) and scheme B results in
the exact solution (18).
= - (x, —=x)) (17)
(18)
The error of scheme A depends on the the ratio
dor/de2 and results in

Es."kcmc A (-\'U)

EJ(‘fzr’nw g (Xp) = 2 X6

E, ema 1 dy .
Boppeet L = s Ul L By g 15
E(xy) 2\ dy,
With a mesh distance ratio in the range
[1/1.16 ...1.16]. the error reaches 30%.
The discretization results and  the crror

calculation for scheme A are valid for the vector at
the mesh point. '
In future work it has to be determined, if the mesh
point itself 1s a good choice for adequate vector
modeling over the whole box, expecially when it is
shifted away from the center. Additionally,
mvestigations for higher dimensions are necessary
to find more results and comparison criteria for the
two discretization schemes.

Analyzing the geometry matrix Mi in scheme B
shows, that it results from a sum of symmelric

matrices e; ®e, whose determinants equal 0 and
whose main diagonals are positive. The sum of
symmetric matrices with positive main diagonals
and non-negative determinants results in a
symmetric matrix with positive main diagonal and a
non-negative determinant. If at least two of the
participating matrices are linear independent, the
determinant of the geometry matrix is positive. As
long as the Delaunay criterion is fulfilled, there are
always linear independent edges for one box and
the inverse geometry matrix can be calculated.

The introduction alrcady stated that the
derivatives on mesh points are needed for the
Jacobian matrix. This makes it necessary, that the
derived  discretization  schemes — are  also
differentiable on quantities &k associated to a mesh
point k. This is indeed possible and one obtains for
Schema A.

5, 1 OEy
E 5 ydy 75— (20}
gy 2 3¢
and for Schema B
OE : OE;
=M, L. 21
e, M L9 o



In both discretization schemes, the existence of
9%  which is available in any device simulation
ak,
based on the box integration method, is sufficient
to calculate 7 .
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Fig. 4. Simulation result of an nMOS transistor in snap-
back. A detailed 2D plot in the marked operating point is
shown in Fig. §.

4. EXAMPLE
To demonstrate the applicability of these
discretization schemes, a two dimensional

simulation with the discretization scheme B is
presented. An nMOS transistor in snap-back is
simulated where impact ionization is the
dominating cffect, and a physical model that
strongly depends on vector quantitics is used.

This gencration term is one of the most challenging
problems, especially when it dominates the device
behavior. For modeling impact ionization in the
driftdiffusion cquation sect, a modified version of
the model [1] has been chosen

G = anil+a/,*ﬁ.
9 q

G* is the impact ionization generation term on the
right hand side of the continuity cquation. Ja and Jp
arc the clectron and hole current densities, q is the
clementary charge and a,, v& {n, p}, is defined as

. E:evir ﬁ“'
S expl — S
I F"

(22)

a, = (23)

v v

where «., E and p, are material dependent

parameters. The difference to the model in [17] is,
that the driving force Fv is used instcad of the
clectric field. The simulations were performed with
an adapted version of MINIMOS-NT [6], all
derivatives of the impact ionization terms werce
caleulated and added to the Jacobian matrix.

The device that was simulated is a standard
nMOS transistor with gate length lg — 1 pm and
oxide thickness tox = 15 nm. During the simulation
the source was grounded and the gate was fixed at a
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low voltage (Va = 0.5V). The drain contact was
first stepped with voltage control from OV up to
10V, then the control was switched to a current
control to simulate the snapback.
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Fig. 5. 2D plot of the impact ionization generation rate at
the operating point marked in Fig. 4.

The result of this quasi-stationary simulation can
be seen in Fig. 4. The discretization scheme
allowed to carry out the simulation in the snap-back
region. A plot of a two dimensional cut through the
device showing the impact ionization rate is
depicted in Fig. 5. Note the big local dilferences
near the drain region.

5. CONCLUSIONS

Two  vector discretization schemes that
seamlessly integrate in the box integration method
were presented. Both schemes allow to be used on
all mesh types, as long as the Delaunay criterion is
fulfilled, so they can be used on orthogonal as well
as on triangular meshes. The general formulation
allows them to be used in 1D, 2D and 3D. An
example simulation of an nMOS transistor in snap-
back was presented, showing that this scheme can
handle numerically challenging configurations very
well.
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