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Abstrad In T U D  envitnnnrm?b, o I)rOJ)cr vector 
disc:rc</izcr/ion in /wo or /hrw dimensiuns is N I I  impurtunt 
isstre. Pllysiml models like tile impact ionization rate 
depend on vector quantities. Two discrerization mct11od.s 
fur Dc~Iuunuy rneslzes bused only on /17e zrtis/rrrc~urc~d 
ncig/?horhood ir?fomatioit are prc.vcnted. Ol~crall good 
conwGcmce is uc:hie~~e~I by upplying fhese me/liods in a 
T W D  en1:ironmcnt for the ca:olculation cf the driving 

.force r~c<c'/ur rrs well us  he c-rrrrenl diwsily vc.c/or. An 
crrample si~nulation of' on n/MOS tran.vi.vtor in snap-haclr 
uper(11ion is presenlc?<I. 

1. INTRODUCTION 

In TCAD simulation cnvironmcnts the basic 
semiconductor equation set, consisting of partial 
differential equations (PDE), has to be solved using 
numerical methods [I]. The spatial discretization is 
described with a mesh laid over the simulation 
domain. The oilen used drift-diffusion model 
consists of three independent variables, that are the 
electrostatic potential (W) and the electron and liolc 
concentrations (n and p). The box integration 
mcthod is most commonly used to dcscribc such 
prohlcms and is also utilizcd in this work [2]. Thc 
method is based on a formulation that considers 
fluxes P i  leaving a Voronoi box i tr) a neighboring 
box j along a connecting edge d,, via the s u h c c  
area A, (scc Fig. I), whcrc the flux I< is cvaluatcd 
only with quantities from the two ncighboring 
points i and j. With the summation of all those 
fluxcs and by using a generation tcrm ((7,) inside 
the box volumc V,, scalar quantities in each box i can 
be approximated with a description similar to (I). 

For tlie calculation o f  this discrctij.;ltion, tlie only 
geometric information necessary is the unstructured 
neighborhood information. This includes a list of 
all mcsh pointswith thcir associatcd volume, 
togctlicr with a connectivity list with onc entry for 
each connection where the associated distance (I, 
and the area A, are stored. Because of the flexibility 
of this formulation, it is independent of the problem 
dimension. 

In the drill-diffusion model two types ol' lluxes 
are used, the dielectric llux and the electron and 
hole current. The dielectric flux is approximated 
using linited differences and the current density 
with the Scharfetter-Gummel discretization [3]. 

Fig. 1. Vonmoi box i of mesh point i with connections to 
neighboring mesh points. The flux from box i to box j (Fii 
) through the area Ai is depicted. The vector quantities E; 
and .I; are conslanl over the whole box i. 

The system of the PDEs is cornmonly solved 
with an iterative Newton solver. The solution 
variables, i.e. W, n and p, are quantities dcfined at 
thc mcsh points and arc thcrcforc known after each 
Newton itcration step. The fluxcs from one box to a 
neighboring box arc only defined at the box 
boundaries. Quantities like a field vcc-tor at a ~ncsli 
point arc normally dctcrrnincd in a post-proccssing 
s?cp. Physical models like the carrier mobility p(B) 
or the impact ionization rate C;, (J,F), depend on 
vector quantities F and J (driving force and cuuent 
density for electrons and holes). Since the results 
form those models influence the solution variables, 
the vector discretization has a considerable impact 
on the simulations result and on the convergence 
behavior of the Newton solver. To achieve a good 
convergence behavior, it is necessary to add the 
derivatives of the yectors to the Jacobian matrix, 
especially when one of the named models 
dominates the device functionality. 

Laux proposed a mcthod for dctcrminc the 
impact ionization generation tcrm on triangular 
mcshcs [4]. 
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Fig. 2. Approach by S. Laux [.?I: The electric field E is 
constant within onc trianglc ,uid each triangle has one 
current dcnsity vcctor J, for cach cdgc. 

The electric field is calculatcd inside a triangle by a 
linear interpolation of Y. 111 contrast, the current 
density inside a triangle is calculated individually 
for three different regions (see J,, J2, J, in Fig. 2). 
by using a weighted lirlcar combination of the 
Scharfetter-Gurnmel discretizcd currcnts along the 
edges: J v  = Jv(.J,! , J,,, J,,), v E (1, 2, 3 ) .  For thc 
implementation of this scheme the triangles (in 2D) 
or the tetrahedrons (in 3D) have to be stored in 
addition to the urlstructurcd neighborhood 
information. Furthermore, a different 
implementation for hvo- and thrcedimensional 
meshes is required. 

In this work, hvo approaches are presented that 
assume all vector quantities constant over the \vIlole 
box, consistent with the box integration method, 
and that only dcpcnd on the unstructured 
neighborhood information. Thcy both aim to meet 
the following demands: 

simple coupling with box integration method; 
exact solution for homogenous fields; 
numerical stability. 

After the derivation, a short discussion of the two 
approaches and a simulation of an nMOS transistor 
in snap-back will be presented, because in this 
operating condition the impact ionization dominates 
2nd the processed vector quantities will 
signilicantly influence the convergence of the 
Newton iteration. 

2. DERIVATION OF VECTOR 
DISCRETIZATION SCHEMES 

Two derivations for possible vector 
discretizations will be givcn in the following. The 
derivations are shown for the electric field, the 
generalization to gradient bascd fluxes is straight 
forward. 

A. SCHEiMB A 

The first discretization scheme defines the 
projected component E" in the direction e, from thc 
electric field E (3), where YJ is the electrostatic 

potential. 
,p= - e, .E = - v (({V - Ti)  e,) (3) 

Fig. 3. Voronoi box of mesh point 0 with its neighboring 
points 1-4 in a non equidistant orthogonal mcsh. The 
contributing ficld components Ev from the edgcs arc 
dcpictcd. 

Ry integrating over the box volume Vi and by 

approximating the integral with a sum, E v n  box i 

can bc written as 

where the sum includes all neighbors j,  A,  is the 
surface bchvcen the two boxes i and j and Y,  is the 
electrostatic potential in v. By defining E, - 

E.\' E y  , can be witten as ( ,  , T  

whcre d, is the distance between i andf (d, = Id, I 
with d ,=  (x,  -. x,y, - ?:)I) a~ ld  E,, is tllc component of 
thc clectric field at the bourrdary bctween box i and j  

The second discretization scheme is an extension 
of the finite difference method and is based on a 
schemc prq~osed in 151. Considering the box 0 in a 
non-equidistant orthogonal mcsh depictecl in Fig. .? 
ancl its neighboring box 1 (not shown explicitly). 
[he electric field along the edge d,, can be expressccl 
as E - -dY/d,. At the boundary between the two 
boxes, i.e. thc midpoint betwccn 0 and 1, thc finirc 
dilference mcthod results in 

the same result as in (6). The clectric field E l  in 

direction e.r at mesh point 0 is expressed with a 
linear interpolation (8). the same procedure is clo11e 

hr the coniponent E t  (9). 



.An cxtensioli of this equation set, that also allows 
edges riot aligned with tlic coordinate axis is 

I J C .  - . 2 ' .  I . - X i  
J -- . I  -- ( lo:) 

x . - .y i  I =-\+(Y- d; 

With the already specified vcctor Ei arid with ei,*= 
diildii, a closed vector presentation can be 
formulated, wl~crc the area Aii is used as a 
weighting factor. 

Notc that (8) and (9) are still rctaincd and can be 
extracted by using e;i = (1 O)T and eg = (0 1)T 
respectively. 33; at the left side of (1 I )  can be taken 
out of the sum and the remaining part of the ssum 
results in a geometry dependent matrix, which is 
calculated once in the beginning of the simulation. 
Tl is  allows the convenient formulation of the fmal 
discretization rule for a vector Vi in point i shown 
in (12), using the gcometry matrix Mi (13) and the 
geometry factor (14). 

3. PROPERTIES OF THE 
DISCRETIZATION SCKE&IES 

Both derivations are based on the unstructured 
neighborhood information only, so thcy can bc 
easily coupled with tlie box integration mctliod. 

The sccoud clemand, the exact solution for a 
honiogcnous fields E = E,,, nritli tlic clcctrostatic 
potential Y(x) = -E,, . x, was verilied on scheme A 
(15) limited on orthogonal grids dddy E {(il 0)', 
(O 

E, = :\.:I ; I Cg7 ( 9 , @ e , i ) ~ , ,  -B, (16) 

The rcsults of [lie discretiialion schemes with a 
linear clcctric field E(x) = -20-x- and an quadratic 
clcctrostatic potential Y ( s )  = o-u' was in\.estigatecl in 
one dimension. Using only the x-axis and the 
naming convcntiot~ frorn Fig. 3, thc discretization 
scheme A rcsults in (17) and sclleme I3 restilts in 
tlic csacr solulion ( 1 X ) .  

Esc, ;'.,,, c..i (.yo) = -n (s, -,I;?) (17) 

E.sc/rr,,rc I( (.yo) = -2 [*. x-0 (18) 

The crror of scheme A depcr~ds on the tlic ratio 
d01/5102 and results in 

Witli a inesh distance ratio in the rangc 
[1/1 .I  6 . . .1.16], the error rcaches 30%. 

The discretization rcsults and tlic crror 
calculalion for schcmc A are valid for tlic vcctoi at 
the mesh point. 
Ln future work it has to be de(ermined, if tllc mesh 
point ilself is a good choice for adequate vector 
modeling ovcr thc whole box, expecially when it is 
shifted away froni the center. Additionally, 
investigations for higher dimensions are necessary 
to find more results and comparison criteria for the 
two discretization schemes. 

Analyzing the geoliletry matris Mi in scheme B 
shows, that it results fiom a sum of symnietric 

matrices e ,  Be,, wliosc dcterrninants equal O and 
wl~ose main diagonals arc positive. The sum of 
synmetric matriccs with positive main diagonals 
arid non-negativc dcterrninants results in a 
symmetric matrix with positive main diagonal and a 
non-negative determinant. If at least two of the 
participating matrices are linear indepcndcnt. the 
determinant of the geometry matrix is positive. As 
long as thc Delaunay criterion is fulfilled, there are 
always linear independent edgcs for one box and 
the inverse geometry matrix can be calculated. 

The int~oduction alrcady stated that tlie 
derivatives on mesh p o i ~ ~ t s  are needed for tlic 
Jacobian nutrix. l h i s  makes it necessary, that the 
dcrived discretization schemes are also 
differentiable on quantities (k associated to a mesh 
point k. This is indeed possiblc and one obtains fbr 
Schema -4. 

and for Schema R 

For schenic B a general proof was performed (1 6). 



Fig. 4. Simulation result of an nMOS transistor in snap- 
back. A detailed 2D plot in the marked operating point is 
shown in Fig. 5. 

In both discretization schemes, the existence of low voltage (Vc; = 0.5V). The drain contact was 
3, which is available in any device simulation first stepped with voltage control from OV up to 
a Zk 1 OV, then the control was switched to a current 
based on the box integration method, is sufficient control to simulate the snapback. 
10 calculate 3. -I 

To deinonstrate the applicability of these 
discretization schemes, a two dimensional 
sin~ulation with the discretization scheme B is 
presented. An nMOS transistor in snap-back is 
simulated where impact ionization is the 
dominating effect, and a physical model that 
strongly depends on vector quantities is uscd. 
This gcncration term is one of the most challcnging 
problems, especially whcn it dominates the device 
behavior. For modeling impact ionization in the 
driftdiffusion equation set, a modified version of 
the rnodcl [I] has bccn choscn 

The result o f  this quasi-stationary simulation can 
be seen in Fig. 4. The discretization scheme 
allowed Lo carry out the si~nulalion in [he snap-back 
region. A plol ol'a two dimensional cut through the 
device showing the impact ionization rate is 
depicted in Fig. 5. Nole the big local differences 
near the drain region. 
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5. CONCLUSIONS 

1 
. . 

. . 

Two vector discretization schemes that 
seamlessly integrate in the box integration method 
were presented. Both schemes allow to be used on 
all mesh types, as long as the Uclaunay criterion is 
fulfilled, so they can be uscd o n  orthogonal as well 
as on triangular meshes. The gcncral formulation 
allows them to bc uscd in 111, 2 D  and 3D. A n  
cxamplc simulation of an nMOS transistor in snap- 
back was presented, showing that this schcmc can 
handle numerically challcnging configurations vcry 
well. 

r- ' ] j; :+.:: 

@' is the irnpact ionization generation term o n  the 
right hand side of the continuity equation. J I I  and J P  Keferen ces 

arc the clcctron and hole current densities, cl is the [I] S. Sclbcrhcrr, ArrclI,~~~is trnd Simultrlion of 
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where a,", c' and P,, are material dependent 

I>aranlctcrs. The diffcrcncc to the modcl in [I] is, 
that the driving force FI, is uscd instead of the 
electric field. The simulations wcrc performed with 
an adapted version of Ml r \ ' r~os -N ' I '  [ 6 ] ,  all 
derivatives of the irnpact ioni7ation terms wcrc 
calc~~latcd and added to the Sacobian matrix. 

'I'hc device that was simulated is a standard 
nblOS transistor with gatc Icngtli lg  - 1 ~ I I I  and 
oxide thickness tax = 15 nrn. During the sirnulation 
the source was grouniled and the gate \vns fixed at n 

. :.-: a*.:, 

Fig. 5.2D plot o f  the impact ionization generation rate at 
0 2.5 5 7.5 lo  12.5 the operating point marked in Fig. 4. 
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