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Abstract 
 
Using the Non-local Empirical Pseudopotential method 
(bandstructure), Full-Band Monte-Carlo Simulations 
(transport), 1-D Poisson-Schrodinger (electrostatics) and 
detailed Band-To-Band-Tunneling (BTBT) (including 
bandstructure and quantum effects) simulations, the effect of 
uniaxial- and biaxial-strain, band-structure, mobility, 
effective masses, density of states, channel orientation and 
high-field transport on the drive current, off-state leakage 
and switching delay in nano-scale, Si, SiGe and Ge, p-MOS 
DGFETs is thoroughly and systematically investigated. 
  
 Introduction 
 
Currently, uniaxial compressively strained Si is the 
dominant technology for high performance p-MOSFETs 
and increasing the strain provides a viable solution to 
scaling [1,2]. However, looking into future nanoscale p-
MOSFETs, it is important to examine novel higher mobility 
channel materials, like Ge, strained-SiGe or strained-Ge, 
which may perform better than even very highly strained-Si 
[3]-[8]. Previous work has attempted to explain the transport 
in uni-axially strained MOSFETs through simple 
bandstructure and mobility calculations. However, as we 
scale MOSFETs down to very short channel lengths, the 
effect of the high-field transport, density of states (DOS), 
bandstructure, mobility and effective mass, in determining 
the eventual current drive needs a thorough and detailed 
investigation. Further, strain modifies the bandstructure [9] 
and dramatically changes the BTBT limited off-state 
leakage [12-13]. In this work, the bandstructures were 
calculated using the non-local Empirical Pseudopotential 
method including spi-orbit interactions [10]. Full-Band 
Monte-Carlo Simulations were used to evaluate the 
transport [11]. A 1-D Poisson-Schrodinger solver and 
detailed BTBT simulations (including direct and indirect 
transitions) were used to calculate the electrostatics and the 
off-state leakage. We systematically compare and 
benchmark nano-scale (Ts=5nm, Lg=15nm) DG p-FETs, 
with different high mobility channel materials (Si, SiGe and 
Ge), in terms of their important performance metrics - Drive 
Current, Intrinsic Delay and Off-state Leakage. Two 
standard channel directions, [100] and [110], on the (001) 
surface are considered. 

Biaxial Strain 
 

Channel Materials and Strain:  
 
We have looked at all possible biaxial strained Si(1-x)Ge(x) 
alloys grown on relaxed Si(1-y)Ge(y) virtual substrates. A 
common terminology used in this paper for biaxial strain is 
a channel material (x,y), where x denotes the Ge content in 
the channel material and y denotes the Ge content in an 
imaginary relaxed (r) substrate to which the channel is 
strained (s). E.g. (0.3,0) is a s-SiGe channel (30% Ge 
content), compressively strained to an underlying r-Si 
substrate. (0,0.6) is a s-Si channel, tensile strained to a r-
SiGe (60% Ge) substrate. 
 
Effective mass, DOS and Bandgap:  
 
Fig 1(a) and 1(b) show the conductivity effective mass in 
the x, y and z directions with Ge content (biaxial strain). 
There is a very rapid reduction in the effective mass of (1,0) 
s-Ge in the xy-plane, while still remaining quite high in the 
z-direction. (0,1) s-Si does not exhibit a strong change in the 
effective mass in the xy-plane and shows a larger reduction 
in the z-direction. The DOS for all the biaxially strained 
materials is about an order of magnitude lower than r-Si 
(Fig.2). The bandgap for (0,1) s-Si and (1,0) s-Ge drops very 
sharply to ~0.4eV (Fig. 3). For r-Ge the lowest valley is L- 
with the �- point just ~0.15eV higher. Strain causes the X-
valley to rapidly decrease to ~0.5eVand the �-point to 
increase >1.1eV (Fig. 4). 
 
Low-field Mobility and Velocity-Field curves:  
 
We find a very dramatic increase in mobility with biaxial 
strain (Fig. 5). The mobility in (1,0) s-Ge is ~25X higher, 
for (0,1) s-Si ~10X higher and for r-Ge ~4X higher, than r-
Si. This is due to a combination of smaller mass and lower 
scattering due to removal of band degeneracy. Application 
of biaxial strain, does not greatly affect the high-field 
transport but it changes the slope of the velocity field curve 
in the low-field, due to the higher mobility (Fig. 6).  
 
Drive Current, Delay and Off-State Leakage:  
 
Clearly, the highest drive currents are obtained in (1,0) s-Ge 
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(Fig. 7). Even though, s-Si has much higher (~2.5X) low-
field mobility, r-Ge performs better because of its lower 
transport mass and higher DOS. The low-field mobility is 
very high (>10X) in some of these materials but the drive 
current enhancement is much smaller (~2X) because the 
transport is still strongly dominated by high-field transport. 
The intrinsic delay (Fig. 8) still tracks the ON-current 
closely. The minimum possible (BTBT limited) off-state 
leakage achievable is shown in Fig. 9. Due to its extremely 
small bandgap, (0,1) s-Si exhibits a very large leakage. 
Strained-Ge shows an optimum leakage at ~1.3% (1,0.6). 
With strain, due to the increase in the �-valley the leakage 
reduces but due to the rapid reduction in the X-valley, the 
leakage again increases. 
 

Uniaxial Strain 
 

Channel Materials and Strain:  
 
We have looked at uniaxially strained, Si and Ge MOSFETs 
on a (001) wafer with channel direction along [100] and 
[110]. Both tensile and compressive stresses from –5GPa to 
+5GPa were considered. The uniaxial stress was along the 
channel direction. 
 
Effective mass, DOS and Bandgap: 
 
The effective masses are shown in Fig. 10. Along [100] Si, 
the effective mass reduces slightly for both tensile and 
compressive in all directions. Along Si [110], compressive 
stress rapidly decreases the mass in the transport direction 
(x) while greatly increasing the mass in the width direction 
(y), leading to a high density of states (Fig. 11). For Ge, 
compressive stress allows a rapid decrease in transport mass 
and along [110] it behaves similar to Si, allowing a 
simultaneous increase in the DOS. As seen in Fig. 12, the 
reduction in bandgap for compressive uniaxial stress along 
[100] is much larger than along [110]. The relative positions 
of all the different valleys for Si [110], Ge [100] and Ge 
110] are shown in Fig. 13 (a), (b) and (c). The lowest valley 
for Si is always X-, and for Ge [110] it is L-. However, for 
Ge [100], the lowest valley shifts from L- to X- for large 
values of stress, due to the rapid reduction in the X-valley 
bandgap. For compressive stress in Ge, the �-valley 
bandgap increases, while for tensile it sharply reduces. 
 
Low-field Mobility and Velocity-Field curves: 
 
The mobility for [100] Ge is the highest along the channel 
direction, due to its lower mass and removal of band 
degeneracy (Fig. 14). The mobility is ~2X larger than [110] 
Ge and ~7X larger than [110] Si. The velocity-field curves 
are shown in Fig. 15 (a) and (b) (compressive and tensile 
stress). Ge [110] shows a larger velocity compared to Ge 
[100]. The velocity for compressive Si [110] is extremely 
large and exhibits stationary velocity overshoot under bulk 

conditions. 
 
Drive current, Delay and Off-State Leakage:  
 
From Fig. 16, we find that the large velocity overshoot in 
compressive Si [110] leads to very high drive currents. The 
higher mobility of Ge [100] and the higher velocity of Ge 
[110] compensate, leading to very similar drive currents, 
which are the highest among all the channels considered. 
The intrinsic delay for Si [110] is very low (Fig. 17) and 
nearly equal to Ge because of its greatly enhanced high-field 
transport. The minimum off-state leakage in compressive Ge 
[110] is an order of magnitude lower than Ge [100] because 
of its larger L- and �-valley bandgaps (Fig. 18). Si [110] 
shows the lowest leakage, (100X lower than Ge), due to of 
its large indirect X-valley bandgap. 
 

Conclusion 
 
The role of strain, channel orientation, bandstructure, DOS, 
effective mass, bandgap, mobility and velocity in 
determining the performance in nanoscale pMOSFETs is 
examined. For biaxial strain, 1.3% (1,0.6) s-Ge provides the 
best trade-off between lower leakage (<10nA) and drive 
current enhancement / delay reduction (~2.5X). For uniaxial 
strain, mainly due to the large stationary velocity gain, 
anisotropic effective mass and large bandgap, Si [110] 
strained compressively to -5GPa performs the best in terms 
of drive current enhancement / delay reduction (~3X) and 
low off-state leakage (<1nA). 
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Fig1 (a) and (b): Effective mass in the x, y and z directions with Ge 
content (biaxial strain). Strained-Ge shows a strong reduction in the mass 
in the x and y direction compared to the z-direction. The trend is reversed 
for biaxially strained-Si. 

Fig2: Strain drastically reduces 
the DOS compared to relaxed Si. 
Relaxed Ge has a higher DOS 
than (0,1) s-Si. 

Fig3: The bandgap rapidly decreases as 
a function of biaxial strain for both Si 
and Ge. The decrease is faster for Si. 

Fig.4: Various valleys and bandgap 
for biaxial strained-Ge. The X-to-L 
crossover occurs at high levels of 
strain. The Γ-valley bandgap 
increases with compressive strain. 

Fig.7: Drive current enhancements are largest for 
compressive biaxially s-Ge. Relaxed Ge shows higher 
drive than biaxially s-Si due to lower transport mass 
and higher DOS. Enhancements are much smaller 
compared to mobility in nanoscale FETs. 

Fig.8: The intrinsic delay still tracks 
the drive current trends quite closely 
for biaxially strained materials. 

Fig.9: The minimum achievable (BTBT limited) 
off-state leakage is worst for s-Si, due to its 
small bandgap. Ge shows an initial reduction in 
leakage with strain due to the increase in the 
direct Γ-valley bandgap. 

Fig.10 (a), (b) and (c): The effective mass for Si and Ge as a function of uniaxial strain. Si [100] and Ge[100] 
show a reduction in mx and my with uniaxial stress. The reduction in Ge [100] along x is stronger. Si [110] and 
Ge [110] show a rapid reduction in mass along the channel and simultaneous increase in the width direction, 
with applied compressive stress. The z-direction mass is not strongly perturbed for compressive stress.  

Fig.11: The DOS is larger for the Si 
and Ge[110] direction compared to 
[100] direction due to the strong 
anisotropic nature of the mx and my. 

 

 

 

  

  
Fig.5: Mobility for s-Ge is 25X 
higher, for s-Si is 10X higher and for 
r-Ge is 4X higher than relaxed Si due 
to lower mass and valley splitting. 

Fig.6: Biaxial strain does not significantly alter the high-field transport 
properties, but changes the slope of the velocity-field curve in the low-
field regime, due to the higher mobility. Higher velocity is obtained 
along the [100] channel direction for Si and Ge. 
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Fig.14 (a) and (b): The low-field mobility vs uniaxial stress for Si and Ge. Mobility is 
greatly enhanced along the channel for Ge [100] due to the low effective mass, reduced 
scattering and valley splitting. The anisotropy in the effective mass is reflected in the 
mobility for [110] direction. 

Fig.13 (c): The lowest valley for Ge [110] is 
always L- and the bandgap is relatively large even 
for large [110] uniaxial stress. The Γ- valley 
increases with compressive stress.  

Fig.15 (a) and (b): The velocity-field curves for uniaxially strained Si and Ge.  Si [110] shows a very large stationary 
velocity gain for uniaxial compressive stress under bulk conditions. The high field transport for Ge [110] is also greatly 
enhanced with uniaxial compressive stress. 

Fig.12: The bandgap reduction for 
compressive stress along [100] is much larger 
than [110] for Si and Ge. 

Fig.13 (a): The lowest valley for Si is 
always X- and the bandgap is relatively 
large even for large [110] uniaxial stress. 

Fig.13 (b): The bandgap is strongly 
affected by stress for Ge [100]. The lowest 
valley shifts to X- at high levels of strain. 

 

 
Fig.17: The delay for uniaxially strained 
Si[110], Ge [100] and Ge[110] are all very low 
due to their excellent transport properties. The 
delay tracks the drive current quite well. 

Fig.18: The minimum achievable off-state 
leakage for [110] under compressive stress 
is lower than [100] for Si and Ge because 
of the larger bandgap. Si [110] shows the 
lowest leakage. 

Fig.16: The drive current for Ge [100] and Ge[110] 
under uniaxial compressive stress is greatly enhanced 
(3.5X). Si[110] also shows very high drive current 
(2.5X) due to enhanced high field transport and 
strongly anisotropic effective mass. 
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