Theoretical Investigation Of Performance In Uniaxially- and Biaxially-Strained Si, SiGe and Ge Double-Gate p-MOSFETs

Tejas Krishnamohan^{1,4}, Christoph Jungemann², Donghyun Kim¹, Enzo Ungersboeck³, Siegfried Selberherr³,

Philip Wong¹, Yoshio Nishi¹ and Krishna Saraswat¹

Department of Electrical Engineering, Stanford University, Stanford, CA, USA 94305

²University of the Armed Forces, Munich, Germany

³Institute for Microelectronics, TH Wing, Vienne, Austria

³Institute for Microelectronics, TU Wien, Vienna, Austria ⁴Intel Corporation, Santa Clara, CA, USA 95054

(E-mail: tejask@stanford.edu)

Abstract

Using the Non-local Empirical Pseudopotential method (bandstructure), Full-Band Monte-Carlo Simulations (transport), 1-D Poisson-Schrodinger (electrostatics) and detailed Band-To-Band-Tunneling (BTBT) (including bandstructure and quantum effects) simulations, the effect of uniaxial- and biaxial-strain, band-structure, mobility, effective masses, density of states, channel orientation and high-field transport on the drive current, off-state leakage and switching delay in nano-scale, Si, SiGe and Ge, p-MOS DGFETs is thoroughly and systematically investigated.

Introduction

Currently, uniaxial compressively strained Si is the dominant technology for high performance p-MOSFETs and increasing the strain provides a viable solution to scaling [1,2]. However, looking into future nanoscale p-MOSFETs, it is important to examine novel higher mobility channel materials, like Ge, strained-SiGe or strained-Ge, which may perform better than even very highly strained-Si [3]-[8]. Previous work has attempted to explain the transport in uni-axially strained MOSFETs through simple bandstructure and mobility calculations. However, as we scale MOSFETs down to very short channel lengths, the effect of the high-field transport, density of states (DOS), bandstructure, mobility and effective mass, in determining the eventual current drive needs a thorough and detailed investigation. Further, strain modifies the bandstructure [9] and dramatically changes the BTBT limited off-state leakage [12-13]. In this work, the bandstructures were calculated using the non-local Empirical Pseudopotential method including spi-orbit interactions [10]. Full-Band Monte-Carlo Simulations were used to evaluate the transport [11]. A 1-D Poisson-Schrodinger solver and detailed BTBT simulations (including direct and indirect transitions) were used to calculate the electrostatics and the off-state leakage. We systematically compare and benchmark nano-scale (Ts=5nm, Lg=15nm) DG p-FETs, with different high mobility channel materials (Si, SiGe and Ge), in terms of their important performance metrics - Drive Current, Intrinsic Delay and Off-state Leakage. Two standard channel directions, [100] and [110], on the (001) surface are considered.

Biaxial Strain

Channel Materials and Strain:

We have looked at all possible biaxial strained Si(1-x)Ge(x) alloys grown on relaxed Si(1-y)Ge(y) virtual substrates. A common terminology used in this paper for biaxial strain is a channel material (x,y), where x denotes the Ge content in the channel material and y denotes the Ge content in an imaginary relaxed (r) substrate to which the channel is strained (s). E.g. (0.3,0) is a s-SiGe channel (30% Ge content), compressively strained to an underlying r-Si substrate. (0,0.6) is a s-Si channel, tensile strained to a r-SiGe (60% Ge) substrate.

Effective mass, DOS and Bandgap:

Fig 1(a) and 1(b) show the conductivity effective mass in the x, y and z directions with Ge content (biaxial strain). There is a very rapid reduction in the effective mass of (1,0) s-Ge in the xy-plane, while still remaining quite high in the z-direction. (0,1) s-Si does not exhibit a strong change in the effective mass in the xy-plane and shows a larger reduction in the z-direction. The DOS for all the biaxially strained materials is about an order of magnitude lower than r-Si (Fig.2). The bandgap for (0,1) s-Si and (1,0) s-Ge drops very sharply to \sim 0.4eV (Fig. 3). For r-Ge the lowest valley is L-with the \square -point just \sim 0.15eV higher. Strain causes the X-valley to rapidly decrease to \sim 0.5eVand the \square -point to increase >1.1eV (Fig. 4).

Low-field Mobility and Velocity-Field curves:

We find a very dramatic increase in mobility with biaxial strain (Fig. 5). The mobility in (1,0) s-Ge is ~25X higher, for (0,1) s-Si ~10X higher and for r-Ge ~4X higher, than r-Si. This is due to a combination of smaller mass and lower scattering due to removal of band degeneracy. Application of biaxial strain, does not greatly affect the high-field transport but it changes the slope of the velocity field curve in the low-field, due to the higher mobility (Fig. 6).

Drive Current, Delay and Off-State Leakage:

Clearly, the highest drive currents are obtained in (1,0) s-Ge

(Fig. 7). Even though, s-Si has much higher (~2.5X) low-field mobility, r-Ge performs better because of its lower transport mass and higher DOS. The low-field mobility is very high (>10X) in some of these materials but the drive current enhancement is much smaller (~2X) because the transport is still strongly dominated by high-field transport. The intrinsic delay (Fig. 8) still tracks the ON-current closely. The minimum possible (BTBT limited) off-state leakage achievable is shown in Fig. 9. Due to its extremely small bandgap, (0,1) s-Si exhibits a very large leakage. Strained-Ge shows an optimum leakage at ~1.3% (1,0.6). With strain, due to the increase in the □-valley the leakage reduces but due to the rapid reduction in the X-valley, the leakage again increases.

Uniaxial Strain

Channel Materials and Strain:

We have looked at uniaxially strained, Si and Ge MOSFETs on a (001) wafer with channel direction along [100] and [110]. Both tensile and compressive stresses from –5GPa to +5GPa were considered. The uniaxial stress was along the channel direction.

Effective mass, DOS and Bandgap:

The effective masses are shown in Fig. 10. Along [100] Si, the effective mass reduces slightly for both tensile and compressive in all directions. Along Si [110], compressive stress rapidly decreases the mass in the transport direction (x) while greatly increasing the mass in the width direction (y), leading to a high density of states (Fig. 11). For Ge, compressive stress allows a rapid decrease in transport mass and along [110] it behaves similar to Si, allowing a simultaneous increase in the DOS. As seen in Fig. 12, the reduction in bandgap for compressive uniaxial stress along [100] is much larger than along [110]. The relative positions of all the different valleys for Si [110], Ge [100] and Ge 110] are shown in Fig. 13 (a), (b) and (c). The lowest valley for Si is always X-, and for Ge [110] it is L-. However, for Ge [100], the lowest valley shifts from L- to X- for large values of stress, due to the rapid reduction in the X-valley bandgap. For compressive stress in Ge, the □-valley bandgap increases, while for tensile it sharply reduces.

Low-field Mobility and Velocity-Field curves:

The mobility for [100] Ge is the highest along the channel direction, due to its lower mass and removal of band degeneracy (Fig. 14). The mobility is ~2X larger than [110] Ge and ~7X larger than [110] Si. The velocity-field curves are shown in Fig. 15 (a) and (b) (compressive and tensile stress). Ge [110] shows a larger velocity compared to Ge [100]. The velocity for compressive Si [110] is extremely large and exhibits stationary velocity overshoot under bulk

conditions.

Drive current, Delay and Off-State Leakage:

From Fig. 16, we find that the large velocity overshoot in compressive Si [110] leads to very high drive currents. The higher mobility of Ge [100] and the higher velocity of Ge [110] compensate, leading to very similar drive currents, which are the highest among all the channels considered. The intrinsic delay for Si [110] is very low (Fig. 17) and nearly equal to Ge because of its greatly enhanced high-field transport. The minimum off-state leakage in compressive Ge [110] is an order of magnitude lower than Ge [100] because of its larger L- and □-valley bandgaps (Fig. 18). Si [110] shows the lowest leakage, (100X lower than Ge), due to of its large indirect X-valley bandgap.

Conclusion

The role of strain, channel orientation, bandstructure, DOS, effective mass, bandgap, mobility and velocity in determining the performance in nanoscale pMOSFETs is examined. For biaxial strain, 1.3% (1,0.6) s-Ge provides the best trade-off between lower leakage (<10nA) and drive current enhancement / delay reduction (~2.5X). For uniaxial strain, mainly due to the large stationary velocity gain, anisotropic effective mass and large bandgap, Si [110] strained compressively to -5GPa performs the best in terms of drive current enhancement / delay reduction (~3X) and low off-state leakage (<1nA).

References

- [1] T. Ghani et al, IEEE IEDM, p. 978, 2003.
- [2] S. Thompson et al, IEEE IEDM, p. 221, 2004.
- [3] T. Krishnamohan et al, IEEE Symp. on VLSI Tech., p. 82, June 2005.
- [4] T. Krishnamohan et al, IEEE Symp. on VLSI Tech., p. 182, June 2006.
- [5] S. Takagi et al, Jour. App. Phys., p. 1567, 1996.
- [6] H. Shang et al, VLSI Tech. Symp., p. 204, 2004.
- [7] T.Tezuka et al, VLSI Tech. Symp., p. 198, 2004.
- [8] P. Verheyen et al, VLSI Tech. Symp., p. 198, 2005.
- [9] M. Fischetti and S. Laux, Jour. App. Phys., p. 4, 1996.
- [10] M. Rieger and P. Vogl, Phys. Rev. B, p. 14276, 1993.
- [11] C. Jungemann and B. Meinerzhagen, Springer, 2003.
- [12] T. Krishnamohan et al, IEEE Trans. Electron Dev., vol. 53, p. 990, May 2006.
- [13] T. Krishnamohan et al, IEEE Trans. Electron Dev., vol. 53, p. 1000, May 2006.

Acknowledgements

This work was sponsored by MARCO Materials, Structures and Devices Focus Center (MSD), Initiative for Nanoscale Materials and Processes (INMP) and an Intel Fellowship.

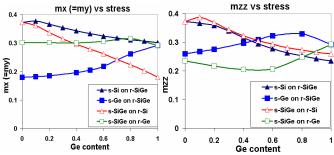


Fig1 (a) and (b): Effective mass in the x, y and z directions with Ge content (biaxial strain). Strained-Ge shows a strong reduction in the mass in the x and y direction compared to the z-direction. The trend is reversed for biaxially strained-Si.

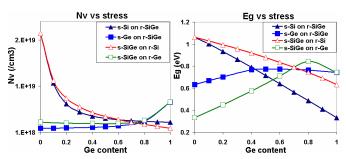


Fig2: Strain drastically reduces Fig3: The bandgap rapidly decreases as the DOS compared to relaxed Si. a function of biaxial strain for both Si Relaxed Ge has a higher DOS and Ge. The decrease is faster for Si. than (0,1) s-Si.

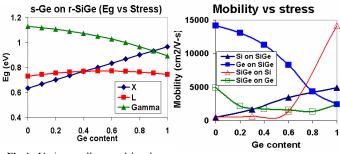


Fig.4: Various valleys and bandgap for biaxial strained-Ge. The X-to-L crossover occurs at high levels of The Γ-valley bandgap strain. increases with compressive strain.

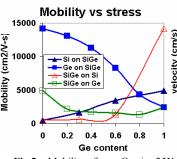


Fig.5: Mobility for s-Ge is 25X higher, for s-Si is 10X higher and for r-Ge is 4X higher than relaxed Si due to lower mass and valley splitting.

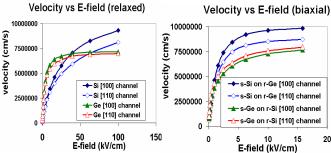


Fig.6: Biaxial strain does not significantly alter the high-field transport properties, but changes the slope of the velocity-field curve in the lowfield regime, due to the higher mobility. Higher velocity is obtained along the [100] channel direction for Si and Ge.

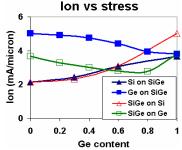


Fig.7: Drive current enhancements are largest for compressive biaxially s-Ge. Relaxed Ge shows higher drive than biaxially s-Si due to lower transport mass and higher DOS. Enhancements are much smaller compared to mobility in nanoscale FETs.

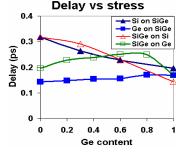


Fig.8: The intrinsic delay still tracks the drive current trends quite closely for biaxially strained materials.

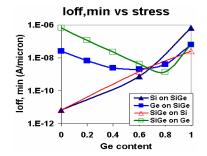
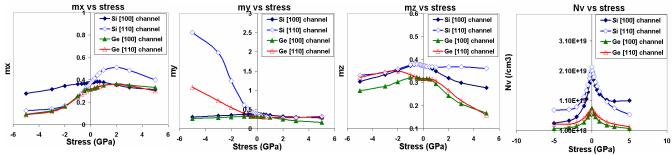
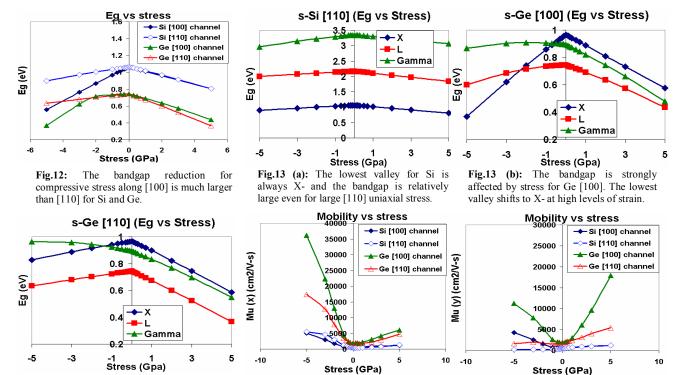


Fig.9: The minimum achievable (BTBT limited) off-state leakage is worst for s-Si, due to its small bandgap. Ge shows an initial reduction in leakage with strain due to the increase in the direct Γ -valley bandgap.

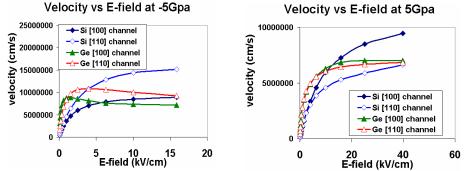

Fig.10 (a), (b) and (c): The effective mass for Si and Ge as a function of uniaxial strain. Si [100] and Ge[100] show a reduction in mx and my with uniaxial stress. The reduction in Ge [100] along x is stronger. Si [110] and Ge [110] show a rapid reduction in mass along the channel and simultaneous increase in the width direction, with applied compressive stress. The z-direction mass is not strongly perturbed for compressive stress.

Fig.11: The DOS is larger for the Si and Ge[110] direction compared to [100] direction due to the strong anisotropic nature of the mx and my.

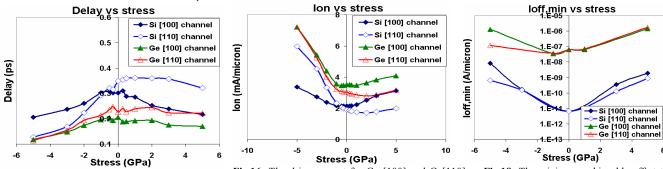


Fig.13 (c): The lowest valley for Ge [110] is always L- and the bandgap is relatively large even for large [110] uniaxial stress. The Γ - valley increases with compressive stress.

Fig.14 (a) and (b): The low-field mobility vs uniaxial stress for Si and Ge. Mobility is greatly enhanced along the channel for Ge [100] due to the low effective mass, reduced scattering and valley splitting. The anisotropy in the effective mass is reflected in the mobility for [110] direction.

Fig.15 (a) and (b): The velocity-field curves for uniaxially strained Si and Ge. Si [110] shows a very large stationary velocity gain for uniaxial compressive stress under bulk conditions. The high field transport for Ge [110] is also greatly enhanced with uniaxial compressive stress.

Fig.17: The delay for uniaxially strained Si[110], Ge [100] and Ge[110] are all very low due to their excellent transport properties. The delay tracks the drive current quite well.

Fig.16: The drive current for Ge [100] and Ge[110] under uniaxial compressive stress is greatly enhanced (3.5X). Si[110] also shows very high drive current (2.5X) due to enhanced high field transport and strongly anisotropic effective mass.

Fig.18: The minimum achievable off-state leakage for [110] under compressive stress is lower than [100] for Si and Ge because of the larger bandgap. Si [110] shows the lowest leakage.