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The conversion of heat to electricity by thermo-
electric devices is a promising alternative for en-
ergy production for the near future. In order to
meet that role, more efficient and reliable thermo-
electric devices are needed. Several approaches like
heterostructures, nanowires, and superlattices using
novel complex materials are currently investigated
[1–4]. So far, none of these results in efficiencies
high enough for economical use. To increase the
conversion efficiency, we present a new approach
to thermoelectric power generation using large area
pn-junctions [5] and show strategies to optimize the
power output for given thermal environments.

Our approach is based on the separation of ther-
mally generated electron-hole pairs by the built-
in potential gradient of a large scale pn-junction
(Fig. 1). A temperature gradient applied along this
pn-junction causes a flux of both carrier types from
the hot to the cold region. We use Minimos-NT [6]
for predictive simulations of our thermoelements.
We apply a rigorous thermodynamical coupling of
the heat system with the semiconductor equations
proposed in [7]. The validity of the physical parame-
ter models was ensured for the unusually large tem-
perature ranges required for this application by cal-
ibrating the models with measured data and results
from full band Monte-Carlo simulations. Finally the
optimization framework Siesta [8] is used in con-
junction with Minimos-NT to optimize the ther-
moelectric generators for a maximum power output
under given external parameters.

The power output and efficiency of the investigated
thermoelectric generators shown in Fig. 1 have been
increased dramatically by locally adapting the band
structure as well as the thermal properties by intro-
ducing graded SiGe alloys (Fig. 2). The bandgap
decreases continuosly from pure Si to pure Ge. The
optimized Ge content shows a strongly increased
part on the hot end of the device due to the smaller
bandgap of this alloy composition which results in
higher generation rates. Furthermore, additional
improvements have been achieved by the applica-
tion of an optimized gold dopand profile as addi-
tional generation centers. The device structure and
doping profile have been adapted accordingly to the
amount of generated carriers. The evolution of the
optimization is presented in Fig. 3. The p- and n-
doped transport layer thicknesses are optimized for
the most effective carrier transport from the high
temperature generation area to the contacts. The
optimized power output is 18 times higher than the
one of a pure Si generator.
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Figure 1: Large area pn-junction with applied temper-
ature gradient. Electric contacts are applied
on the cold end of the device. The heated
side is the zone of strong generation.
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Figure 2: Temperature distributions for several Ge
content profiles. The lower thermal con-
ductivity of Ge leads to shifted temperature
curves.
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Figure 3: Power output for several structures in sev-
eral development states at 700K hot end
temperature. The power output of the fi-
nal optimized generator design is 18 times
higher than the one of a pure Si generator.
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