
THE UNIVERSALITY OF NBTI RELAXATION AND ITS IMPLICATIONS FOR

MODELING AND CHARACTERIZATION

ABSTRACT

As of date many NBTI models have been published which aim

to successfully capture the essential physics [1–5]. As such, these

models have mostly focused on the stress phase. The relaxation

phase, on the other hand, has not received as much attention, possibly

because of the contradictory results published so far. Particularly

noteworthy are the very long relaxation tails of almost logarithmic

nature [5–7], which cannot be successfully described by the reaction-

diffusion model [7]. We argue that understanding the nature of the

relaxation phase could hold the key to unraveling the underlying

NBTI mechanism. In particular, we stipulate that the relaxation

phase follows a universal relaxation ‘law’ [6, 8–10], demonstrate the

valuable consequences resulting therefrom, and use this universality

to classify presently available NBTI models.

I. INTRODUCTION

Although being known for forty years [11], negative bias tem-

perature instability (NBTI) is attracting an ever growing industrial

and scientific attention as one of the most important reliability issues

in modern CMOS technology. NBTI is mostly described by a shift

of the threshold voltage when a typically large negative voltage is

applied to the gate of a pMOS at elevated temperatures [12, 13]. In

the following we assume that during NBT stress the change in the

density of interface states, which are commonly assumed to be Pb

centers [14], is given through ∆Nit(t). It is assumed that charging and

discharging of these interface states is very fast, and consequently that

the positive charge in these interface states follows the Fermi-level

via

∆Qit(t) = q

∫

∆Dit(Et,t) f (EF,Et,t)dEt . (1)

Here, ∆Dit is the time-dependent density of interface states, which

is by a still to be quantified relation directly linked to ∆Nit(t) [15],

and f (Et) their occupancy. During NBT stress, the Fermi-level EF

is close to the valence band edge and f (Et) ≈ 1 throughout the

silicon bandgap. Thus, during stress, under the assumption that Pb-

centers introduce states only within the silicon bandgap, see [4] for a

different interpretation, all newly generated interface states ∆Nit are

positively charged and one obtains independently of the exact form of

the density-of-states ∆Qit(t)≈ q∆Nit(t). This is the usual assumption

employed for instance in the reaction-diffusion model.

On top of generated interface defects, charge may be stored in

existing or newly created oxide traps. Although most of these traps

may still be considered ’fast’, they are more difficult to charge and

discharge, that is, have larger time constants than interface states due

to their location inside the oxide bulk. Thus, their occupancy cannot

follow the Fermi-level and ∆Qox(t) will be governed by different

dynamics. The contribution of the oxide charges to the threshold

voltage shift is formally written as

∆Qox(t) = q

∫∫

∆Dox(x,Et,t) fox(x,Et,t)(1−x/tox)dx dEt , (2)

with ∆Dox being the spatially and energy-dependent density-of-states

in the oxide, fox the occupancy of these traps, and tox the oxide

thickness. Note that the issue of whether oxide charges are important

during NBTI or not is one of the most controversial at the time [2,

4, 16, 17]. Also, the question whether ∆Dox consists mainly of pre-

existing traps [2, 16] or traps that are created during stress [4] remains

to be answered.

Other potential contributions to a threshold voltage shift like

mobile charges are commonly assumed to be negligible in the context

of NBTI and the total threshold voltage shift is thus given by

∆Vth(t) =
∆Qit(t)+∆Qox(t)

Cox
. (3)

During stress, most measurements indicate that ∆Vth(t) follows a

power-law as Atn [12]. However, log-like behavior, in particular at

short times, has also been reported [7, 18, 19].

The fundamental problem in the context of NBTI is given by

the fact that the damage created during the stress phase begins

to recover immediately once the stress is removed. This makes

the classic measurement technique where the stress is interrupted

during the extraction of the threshold voltage problematic [7, 20]. In

particular, the value of the extracted power-law exponent depends

significantly on the delay introduced during the measurement [5,

17, 21]. Experimental results obtained with delayed measurements

show a linear increase of the exponent with temperature [5, 17, 22]

with values around 0.2− 0.3. In contrast, temperature-independent

exponents in the range 0.07− 0.2 have been extracted from recent

delay-free measurements [9, 19, 23]. Of particular interest is the

question related to the origin of this relaxation. While some authors

assume that hole trapping is negligible and both degradation as well

as relaxation is determined by the temporal change of the interface

state density [17], others acknowledge at least partial importance of

trapped charges [4, 19, 22, 24]. In the latter case it has been assumed

that trapped charges either form the ’fast’ component of NBTI

relaxation superimposed onto some interface defect relaxation [19,

24] or are solely responsible for any recovery while created interface

defects do not recover at all [4, 22].

II. MEASUREMENT ISSUES

The understanding and characterization of NBTI is considerably

hampered by the difficulties arising during measurement. Currently,

two techniques are used to characterize NBTI: the classic measure-

ment/stress/measurement (MSM) technique, which is handicapped

by undesired relaxation, and on-the-fly (OTF) measurements which

avoid any relaxation by maintaining a high stress level throughout

the measurement and directly monitor the drain current in the linear

regime, ∆ID,lin. Since it is the threshold voltage shift ∆Vth rather than

∆ID,lin that is relevant for design purposes, ∆ID,lin has to be converted

into the more relevant ∆Vth which involves some approximate rela-

tions [22] or an empirical formalism [25]. This issue is of particular

importance during the assessment of the relaxation phase: When VG is
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Fig. 1: Influence of the interface state occupancy on the observed

threshold voltage shift during OTF measurements. During stress, nearly

all interface traps are positively charged. When a different gate voltage

is used during relaxation, only a fraction of the traps are visible which

must be separated from the real relaxation. Schematically shown is the

density-of-states typically associated with Pb0 and Pb1 centers [26].

left at V relax
G [6], the interface trap occupancy is considerably lower

than during the stress phase [15], resulting in spurious additional

relaxation (Fig. 1). Conversely, when VG is brought back to V stress
G

[9], one faces the opposite problem one is trying to avoid during the

stress phase, since now additional uncontrolled stress is introduced

during the measurement cycles. Even more important is the fact that

the initial value of ID,lin is extremely difficult to determine as it

is already obtained at the stress voltage. Conventionally, the time

required for this is in the milliseconds range where already significant

degradation can be observed [19] but any uncertainty in ID,lin modifies

the time exponent (the ’slope’) of ∆Vth on a log-log plot. This may

render many results obtained by the OTF technique questionable. In

contrast, the MSM technique probes the interface under comparable

conditions during both the stress and relaxation phase. In addition,

the voltage applied to the gate is close to the threshold-voltage where

only negligible degradation can be expected. However, as is shown

below, it is probably very difficult to minimize the measurement

delay in such a way that the true degradation is observed.

III. CHARACTERIZATION OF RELAXATION

To formally distinguish between the degradation during the stress

and relaxation phases we use the term S(ts) for the real damage

accumulated during the stress phase. As soon as the stress voltage is

removed, relaxation sets in as a function of the accumulated stress

time ts and the relaxation time tr = t − ts, which will be denoted

as R(ts,tr). Furthermore, we introduce SM(ts,tM) as the observed

damage during an MSM sequence with a measurement delay of tM.

Since the damage S(ts) is known to relax as soon as the stress

voltage is removed, possible at timescales shorter than a microsecond

[7], a rigorous characterization of the relaxation phase is extremely

challenging. Typically, the relaxation data R(ts,tr) recorded at differ-

ent stress times ts have been normalized to the first measurement point

tM as rf(ts,tr) = R(ts,tr)/R(ts,tM), the fractional recovery, and aligned
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Fig. 2: Demonstration of universal recovery for the OTF data of Denais

et al. [10]. The top figure shows a conventional view of the fractional

recovery as a function of the relaxation time tr. Apparently, data obtained

after longer stress times, seems to relax more slowly than data obtained

at shorter times. The bottom figure, on the other hand, demonstrates the

universality of relaxation when the relaxation data is normalized to the

last stress value and plotted over the ratio ξ = tr/ts [10]. Also shown are

some possible empirical expressions which can be fit to the data.

as a function of the absolute relaxation time tr [5–8], see Fig. 2.

Although the functional form of the relaxation remains illusive in

such a plot, Rangan et al. [8] were the first to observe certain features

of a universality in the relaxation. This and subsequent studies can

be summarized as follows:

R1) Recovery does not level off even at the shortest times [8] which

implies that it is difficult to asses the real damage a tr = 0. This

is even true for the ultra-fast data obtained by Reisinger et al. [7]

with tM = 2.2 µs.

R2) For longer stress times, the relaxation apparently slows down [5,
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8, 9], that is, the fractional recovery becomes smaller, as visible

in Fig. 2.

R3) Independent of the stress field, the fractional recovery is roughly

similar [8].

R4) The universality as proposed by Rangan et al. has been studied

by Krishnan et al. [9], who observed that the fractional recovery

is even independent of the stress-time. This, as also pointed out

by Krishnan et al., is somewhat in disagreement with R2 which

states that the fractional recovery becomes smaller with larger

stress times.

R5) Recovery seems to reset a certain fraction of the defects to their

original state, as proven by re-stress experiments [8, 22].

R6) Denais et al. [10] realized that the relative recovery obtained

after different stress times follows the same pattern when plotted

as a function of relaxation time over stress time, ξ = tr/ts, see

Fig. 2.

R7) Contradicting evidence is available regarding the recovery field-

dependence, where [8, 17] report no field-dependence contrary

to [5, 22] who observe a strong field-dependence.

As will be shown, the universality described by Denais et al. is

both the most intriguing and consequential feature as it has a

fundamental impact on any theoretical understanding of NBTI and

should therefore be an important ingredient in any modeling attempt.

Considering also the fact that not all damage can recover, that is,

that there could be a permanent component P(ts) [8, 27], we rewrite

the accumulated damage as S(ts) = R(ts,0)+P(ts) and introduce the

universal relaxation function as

r(ξ ) =
R(ts,tr)

S(ts)−P(ts)
=

R(ts,tr)

R(ts,0)
(4)

and discuss its properties and consequences in the following. Note

the relation between the universal recovery function and the fractional

recovery given by rf(ts,tr) = r(ξ )/r(ξM) with ξM = tM/ts. Since the

data available to us does not definitely support the existence of a

permanent component, we will assume the permanent component to

be negligible in the following and assume P(ts) = 0.

A. Functional Form of the Relaxation

Lacking a universally accepted and valid theory for NBTI, the

exact form of the universal relaxation function r(ξ ) remains illusive

at this point and we will have to empirically estimate r(ξ ) in the

following. Various empirical expressions have already been suggested

and fit to measured relaxation data. Generalized for universality,

these expressions include r(ξ ) = 1−Bξ β [28], r(ξ ) = 1−B log(ξ )
[29], and r(ξ ) = 1−C(1− exp(−Bξ )) [30]. These expressions are

problematic as they either have no asymptotic limit for large and/or

small ξ , or they do not capture recent measurement data. In particular,

we will show that the limit r(ξ → 0) is of considerable practical value

and should be meaningful in any analytic expression.

Interestingly, NBTI models operating in the diffusion-limited

regime, be it classic [29] or dispersive diffusion [5], agree that

the relaxation depends on the ratio ξ = tr/ts only, that is, they are

universal in our sense. For the reaction-diffusion (RD) model Alam

[29] derived the approximate solution r(ξ ) = 1−
√

γξ/(1+ξ ) with

the empirical parameter γ ≈ 0.5. Although this expression is accurate

for small ξ , for large ξ it has the limit 1−√
γ which for γ 6= 1 does

not agree with the numerical solution of the RD model which exactly

goes to zero. It can be shown that the power-law-like expression

r(ξ ) = 1/(1+ξ 1/2) (5)

agrees very well with the numerical solution over the whole range of

relaxation times (cf. Fig. 12). Generalizing the RD model to allow for

dispersive transport of the hydrogen-species, Kaczer et al. [5] derived

r(ξ ) = 1/(1+ξ α/2) (6)

with α being the dispersion parameter (α ∈ [0 . . .1]). Note that in

the diffusive limit where α = 1, the RD result is retained. However,

as will become clear in the sequel, neither (5) nor (6) can cover

the whole range of available measurement data and we will use the

generalized form

r(ξ ) = 1/(1+Bξ β ) (7)

where the parameters B and β are in the range B ≈ 0.3 − 3 and

β ≈ 0.15−0.2 for most of the data available to us.

Since the exact form of the relaxation function has important

implications on the interpretation of the measurement data, we

also consider alternative expressions. First, we note that relaxation

in disordered systems has long been described using a stretched-

exponential [31]

r(ξ ) = exp(−Bξ β ) . (8)

Also, Denais et al. [10] suggested the empirical expression

r(ξ ) = 1−β log(1+Bξ ) , (9)

while Huard et al. [18] used the analytic solution of a hole-trapping

problem derived in [32] which appears to be of a similar form (see

Section VII-C for a discussion)

r(ξ ) = β log(1+B/ξ ) . (10)

We note that (9) has no useful limit for large ξ while (10) goes to

infinity for ξ → 0. Since we will make extensive use of the latter limit,

we will use the empirical relation (9) in our comparisons, noting that

the singularity in the physics-based expression (10) is a consequence

of the simplifications employed in the derivation presented in [32] and

does of course not exist in the full numerical solution. Nevertheless,

both expressions are equivalent for intermediate values of ξ and will

be labeled ’log-like’ in the following.

The expressions summarized above are compared in Fig. 2. All

expressions can be fit to the measurement data and give fits of

practically the same accuracy. However, they result in different

extrapolations for large and small relaxation times, the consequences

of which need to be carefully studied.

IV. CHARACTERIZATION OF MSM DATA

Although more delicate to apply, universal relaxation is of par-

ticular interest for data obtained by the MSM technique. For the

normalization needed in (4) one has to keep in mind that the value

of S(ts) = R(ts,0) is essentially unknown, one only knows R(ts,tM)
determined at the first measurement point available after a short

relaxation period tM. However, making use of the universal relaxation

expression (4) and assuming for the time being that r(ξ ) is known,

S(ts) = R(ts,0) can be obtained as

S(ts) =
R(ts,tM)

r(tM/ts)
. (11)

Inserting the above into the universal relaxation relation (4) we obtain

r(ξ )

r(ξM)
=

R(ts,tr)

R(ts,tM)
. (12)

From (12) the as of yet unknown parameters B and β can be easily

determined from a measured sequence of relaxation points R(ts,tr),
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Fig. 3: Application of universal relaxation to the ultra-fast MSM data

obtained by Reisinger et al. [7]. Depending on the choice of the universal

relaxation function, the individual data points can be mapped onto the

respective universal curve, in this case (7). Note the linear behavior of

1/r−1 shown in the upper plot. The slight deviation for ξ > 102 could

bear the hint of a permanent component P(ts).
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see for example Fig. 3. Naturally, in contrast to data obtained by

OTF measurements where R(ts,0) is known, the analytical expression

determines the final value of R(ts,0) through the extrapolation given

by (12). This results in a ’floating’ behavior of r(ξM) which reflects

the uncertainty of this approach.
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Fig. 5: The uncertainty introduced by extrapolating back to tM = 0

using a particular relaxation function. This uncertainty is in the order

of 10% for the relaxation functions considered here. For the sake of

clarity, only the ts = 100s data of Reisinger et al. [7] is shown. Note that

the different extrapolations to tM = 0 shift the same measurement data

(various symbols) by a multiplicative factor.

Before looking at this issue, however, we consider the case of a

typical MSM sequence. We recall that during MSM sequences the

duration of the stress intervals usually grows exponentially while

the measurement interval tM is short and of constant duration.

This implies that after a certain stress time, which we determined

empirically to be of the order ts & 10 × tM, the relaxation during

the measurement does not significantly alter the damage at the end

of each stress phase, meaning that the damage relaxed during each

measurement interval is mostly restored during the next stress phase.

Consequently, equation (11) holds for every stress point ts, where ts
is now the accumulated net stress time. For the particular case of the

RD model we will show later that this is an excellent approximation.

The likely correctness of this assumption for real measurement data

is demonstrated in the following. First, the application of the above

procedure to the detailed relaxation data published by Reisinger et

al. [7] is studied in Fig. 3 and for the IMEC data otherwise published

in [5] in Fig. 4, where the universality is shown at three different

temperatures, 50 ◦C, 125 ◦C, and 200 ◦C.

A. Uncertainty Related to the Analytic Expression for r(ξ )

In Fig. 3 and Fig. 4, the universality has been demonstrated using

the relaxation expression (7). Naturally, one may inquire about the

influence of the universal relaxation function on the final result. This

issue is explored in Fig. 5, where the above procedure is performed

using the universal relaxation functions (7), (8), and (9). Although all

expressions considered here can be fit to the measurement data, the

different predictions for the extrapolated value at tM → 0 result in an

uncertainty of roughly 10%. Unfortunately, the data available to us

at the moment is not conclusive to decide on the best approximation

for r, but the power-law-like expression (7) gives the best fit over the

entire range also including large relaxation times, while the log-like

expression might slightly better capture the saturation for small times.

The slight deviation for ξ > 102 could bear the hint of a permanent

271



10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Stress Time  [s]

10

∆
V

th
  
[m

V
]

Power-Law
Stretched-Exp

Log

Uncorrected
In

fi
ne

on

IM
E
C
 / 

2

50

Fig. 6: Corrected results using the three universal relaxation functions
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Infineon IMEC
Analytic Form A [mV] n A [mV] n

Uncorrected 14.1 0.1866 8.9 0.1918

Log 16.5 0.1444 12.6 0.1499
Power-Law 18.4 0.1462 15.8 0.1495
Stretched-Exp 21.2 0.1441 17.6 0.1493

TABLE I: Influence of the various analytical expressions on the corrected

slope and prefactor for a fit expression of the form Atn. Although the

prefactor depends on the correction method, the more important slope is

virtually independent of it.

component P(ts), which would have to be subtracted according to (4)

before studying universality [27].

To judge the implications of the uncertainty related to the floating

behavior of the final universal curve, we use the universal relaxation

relation (11) to extrapolate from each measurement point to its ’true’

value. Interestingly, one observes that in this particular case all

relaxation functions result in the same power-law exponent while

only the prefactors depend significantly on the choice of r(ξ ). This is

demonstrated in Fig. 6 for the relaxation data of Reisinger et al. [7]

and Kaczer et al. [5]. Interestingly, although the uncorrected data

of Reisinger et al. have quite a visible curvature on a log-log plot

and are as such not well described by a power-law, the corrected

version can be very well described by a power-law with exponent

n = 0.15. We recall that a deviation of the initial data from a power-

law was one of the reasons why Reisinger et al. concluded that a log-

like hole-trapping component has to be superimposed to a standard

H-RD power-law with exponent n = 1/4. We thus conclude that

even ultrafast measurements with tM = 1 µs are not fast enough

for obtaining the ’true’ slope, at least not for ts < 100s. This can

also be directly observed in Fig. 3 where only the data obtained for

ts = 100s shows signs of saturation.

The delayed and corrected values for the exponent and the prefac-

tor are summarized in Table I, which confirms that the differences in
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Fig. 7: Comparison of the analytic model for MSM measurements based

on the universal relaxation to the data of Reisinger et al. [7] (top) and

Kaczer et al. [5] (bottom). Excellent accuracy of the analytic model

is obtained for all available delay times. In addition, the ’true’ NBTI

degradation can be recovered by extrapolating to tM = 0s.

the values for the corrected exponents are well below the measure-

ment accuracy. Thus, even if the empirical relaxation functions given

by (7) – (9) contain some uncertainty, the influence on the corrected

power-law exponent is probably small and the correct exponent can

be expected to reflect the true degradation in a much better way than

the uncorrected result. Also, the corrected exponents agree very well

with exponents reported in some recent publications obtained from

OTF measurements [9, 23].

B. Influence of Measurement-Delay on the Power-Law Parameters

Next, we show that the universal relaxation expression naturally

connects individual stress curves obtained using the MSM technique

with different delay times. For simplicity we assume that the true
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Fig. 8: Influence of the measurement delay on the measured slope as

reported by various groups. The solid lines are given by a fit to (14) using

the parameters in Table II. Note the strong temperature-dependence of

the reported slopes and that the slopes were found to be constant over

3-4 decades in many measurements. Clearly, there is a large spread in the

measurement data indicating a technology dependence. The dotted lines

show the slopes predicted by the RD model at ts = 100s and ts = 10,000s.

Note that the RD slope changes considerably within two decades, is

per construction temperature independent, and cannot be adjusted to the

technology.

Source T n B β
Ershov [21] 105 0.15 (fixed) 1.49 0.179
Kaczer [5] 125 0.15 (fixed) 1.29 0.136
Li [33] 125 0.15 (fixed) 4.08 0.163

Alam [17] 50 0.155 4.79 0.611
Alam [17] 100 0.177 40.23 0.973
Alam [17] 150 0.186 102.2 1.048

TABLE II: The parameters for (14) used to fit the data in Fig. 8 assuming

ts = 1,000s. The fit was obtained using a fixed n = 0.15 with a simple

least-square algorithm. However, in order to fit the data of [17], which

are different from the other sources considered in this study, n had to be

included as a free parameter. Keep in mind that these values should be

taken with care, since they were extracted by a fit to three or four rather

inaccurate slope values using two/three free parameters. The inaccuracy

of the slope values is a result of both the measurement uncertainty as

well as the time-dependence of the slope.

degradation behavior follows a power-law as S(ts) = Atn
s and that the

universal relaxation is given by (7). Due to the measurement delay

one observes instead of the power-law

SM(ts,tM) = S(ts)r(ts,tM) =
Atn

s

1+B(tM/ts)β
. (13)

Equation (13) is validated against the Infineon and IMEC data in

Fig. 7 where the parameters B and β are given by the universal

relaxation law. The analytic expression (13) exactly reproduces the

delayed measurement results for various delay times tM and thereby

convincingly confirms our assumptions stated above.

As a consequence of the measurement delay, the observed power-
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Fig. 9: Error in the slope (top) and prefactor (bottom) introduced by the

measurement delay for the IMEC data of Fig. 4 as a function of ts/tM.

Based on the power-law correction and extrapolation one obtains that for

the slope and prefactor to be accurate be within 10%, the stress time has

to be at least six orders of magnitude larger than the measurement delay.

Also shown is the prediction of the RD model which reaches the 10%

criterion after ts = 10× tM, in contradiction to measurements.

law exponent nM will be time-dependent and given through (13) as

nM(ts,tM) = n− r′(tM/ts)
tM/ts

r
= n+

βB

B+(ts/tM)β
(14)

with r′(ξ ) = ∂ r(ξ )/∂ξ . It is worthwhile to stress that although many

groups report a ’constant’ measured power-law exponent over 3-4

decades which varies as a function of the temperature and delay-

time, this can of course only be approximately correct. The fact that

all curves obtained with different delay-times have to merge at larger

times, makes a time-dependent slope a necessity. However, depending

on the actual values of B and β this time-dependence will be more-or-

less visible in a log-log plot. In general, the smaller β , the less visible

the time-dependence will be. A comparison of measured power-law

exponents as a function of the delay time tM and temperature is given

in Fig. 8. Most of the data shows an apparently constant power-

law exponent (within the measurement accuracy) over 3-4 decades.

Clearly, the measured power-law exponents, and consequently B

and/or β (see Table II), depend on temperature and on the particular

technology.

The measurement delay related error in the slope and prefactor of

a supposed power-law degradation can be studied analytically using

(13). This is shown in Fig. 9 where these errors are displayed as

a function of ts/tM using the parameters extracted from the IMEC

data of Fig. 4. Naturally, all models confirm that as a consequence

of the delay the slope is always overestimated while the prefactor

is always underestimated. Of particular interest here is the different

prediction of the three universal relaxation expressions. The power-

law and the stretched-exponential predict that in order to obtain the

slope and prefactor with an accuracy of 10%, the stress time ts has

to be at least six orders of magnitude larger than the measurement

delay tM. For example, to keep the stress time below 104 s requires

a measurement delay smaller than 10ms. In contrast, the logarithmic
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Fig. 10: The influence of the measurement delay and the stress time on

the predicted time-to-failure. The exact shape and the intersection with

the 0% line depends on the failure condition SF. In general, however, the

error in the prefactor dominates the result for short stress times while for

large stress times the slope error prevails.

relaxation expression shows a distinct kink and predicts the same

accuracy after only four orders of magnitude. Further measurements

are required to clarify which expression is more accurate. Also note

that for ts < 103 × tM all models predict roughly the same error in

the slope and consequently result in the same correction. This is in

agreement with all measurement data known to us where the influence

of the measurement delay is still clearly visible after long stress times.

We finally remark that the RD model predicts an error smaller than

10% after ts = 10× tM. In other words, the RD model predicts that

after a stress time not significantly longer than the measurement delay,

the error introduced by the delay becomes negligible, which is in

contradiction to measurements.

C. Influence of Measurement-Delay on Time-to-Failure Prediction

From the corrected power-law exponents and prefactors the time-

to-failure can be straight-forwardly calculated. With the criterion

S(tF) = SF one obtains

tF =
(SF

A

)1/n
. (15)

In contrast, an MSM measurement is normally conducted up to a

certain stress time ts = t0 from which the exponent nM(t0,tM) and

prefactor are approximately extracted and subsequently used for the

extrapolation in (15). The error inherent in the MSM technique

can be analytically estimated using (13). By considering a Taylor

expansion around t0 we obtain SM(ts,tM) ≈ SM(t0,tM)(t/t0)
nM(t0,tM)

and consequently

t̃F(t0,tM) = t0

( SF

SM(t0,tM)

)1/nM(t0,tM)
. (16)

The overall error in this time-to-failure approximation consists of a

contribution from the error in the prefactor and the error in the slope

and the exact behavior of t̃F(tM) thus depends on t0, tM, and SF. A

typical scenario is shown in Fig. 10 with the parameters from Fig. 7.
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Fig. 11: Reconstruction of the ’true’ degradation from MSM data

obtained Li et al. [33] with four different delay times without the

knowledge of the detailed relaxation behavior. Again, a corrected slope

of about n ≈ 0.15 is obtained. Note that even at ts = 104 s the lines do

not merge and the impact of the delay is still clearly visible.

As already pointed out by Schlünder et al. [34], the time-to-failure

is first underestimated and then overestimated. The underestimation

is a consequence of the underestimated prefactor which dominates at

early stress times but is overcompensated by the overestimated slope

at large stress times. The intersection with the 0% line depends on

the failure condition SF. In particular, for delay times larger than 1s

the error can be quite significant, independent of the final stress time

t0, meaning that the detrimental effect of delay does not disappear,

even at very large stress times.

D. Reconstruction of MSM Data without Detailed Relaxation Data

We summarize the particularly intriguing feature of the universal

relaxation in the context of MSM data which is given by the fact that

it allows one to reconstruct the ’true’ (undelayed) measurement

curve from delayed data sets. This suggests a novel measurement

technique: (i) determine R(ts,tM) using different delay times, or,

determine R(ts,tM) using a single delay time and add a long relaxation

period at the end. (ii) from that data determine B and β . (iii) Finally,

calculate the ’true’ degradation using (11). The variant where B

and β have been obtained from relaxation data has been already

demonstrated in Fig. 7. However, the method also works for MSM

data obtained with different delay times where no relaxation data is

available. In that case the parameters A, n, B, and β can be directly

extracted through fitting of equation (13). This is demonstrated in

Fig. 11 for the data published by Li et al. [33]. Again, the extracted

parameter values agree very well with the cases where we had access

to the full relaxation data.

V. THE REACTION-DIFFUSION MODEL

Based on the universal relaxation we now analyze the predictions

obtained from theoretical models. For this, the models under con-

sideration have been implemented into a partial-differential-equation

solver and solved numerically, to rule out any uncertainties related to

approximate analytic expressions. We start with the reaction-diffusion
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Fig. 12: Comparison of the two analytic expressions for the RD relaxation

behavior with numerical results obtained for H and H2 kinetics. The

power-law-like expression is accurate for all relaxation times and will be

used as reference throughout this work. Due to the lack of parameters

there is no way to fit the measurement data with the RD model.

(RD) model, which predicts a universal relaxation practically inde-

pendent of the species (H and H2) as r(ξ ) = 1/(1 + ξ 1/2). This

analytic expression is compared to the numerical results for both

species in Fig. 12. Also shown is the measurement data of Reisinger

et al. [7]. It is worthwhile to realize that the relaxation predicted

by the RD model does not depend on any model parameters.

The reason for this is that just as during the stress phase, relaxation

occurs in the diffusion-limited regime. However, since the forward

term is dropped and the interface state density ∆Nit(t) is assumed

to be in quasi-equilibrium, the actual value of the reverse rate has

no influence on the result. Also, since we have two diffusion fronts,

one diffusing towards the interface to passivate interface defects and

one diffusing away from it, the diffusion coefficient itself cancels out

of the expression. Consequently, it must be clearly emphasized that

since the relaxation predicted by the RD model cannot be made to

depend on gate bias, temperature and process conditions, there is no

way to fit that particular measurement data. In particular, β = 1/2

is much larger than observed experimentally, leading to a relaxation

which is too slow in the beginning and too fast in the end. This

is clearly visible in Fig. 12 where most of the relaxation occurs

within 3 decades whereas the measurements show relaxation over

10 decades. Consequences of this erroneous relaxation prediction are

a heavily time-dependent but temperature-independent slope in

the RD simulated delayed measurements, and a vanishing influence

of the delay on the measurement result for ts & 10× tM (Fig. 13),

in contradiction to measurements [5, 21], see also [19]. The only

way to move the relaxation curve to shorter relaxation times is to

bring the forward reaction into the quasi saturation regime where

hydrogen has already piled up considerably in the oxide (assuming

a reflecting boundary condition). However, in addition to the fact

that this behavior is not universal, the slope during the stress phase

approaches zero.
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Fig. 13: Influence of the measurement delay tM as predicted by the

RD model. Comparison of the analytic model (lines) with the numerical

solution (symbols) proves the excellent accuracy of the analytic model for

t > tM. Note that the RD model predicts a very small influence of delay

for longer stress times, in contrast to Fig. 7. For the sake of comparison,

a more realistic influence of the measurement delay is given by the dotted

lines, obtained with typical parameter values B = 3 and β = 0.18.

VI. EXTENDED CLASSICAL REACTION-DIFFUSION MODELS

As the standard form of the RD model has been found to have also

limitations during the stress phase [9, 35], extended versions have

been introduced. However, the question of whether these extended

models are better able to describe the relaxation behavior has so far

only been qualitatively assessed and a rigorous statement is missing.

This will be done in the following.

A. Two-Region RD Model

First, it has been noted that due to the extremely thin oxides used in

modern technology, the diffusing hydrogen species may quickly reach

the oxide/poly interface [9]. As a consequence, the degradation will

be dominated by the presumably slower diffusion in the poly gate.

We will discuss two variants of RD models extended to account for

such a situation. The first variant assumes the oxide/poly interface to

be a perfect transmitter. At short times the oxide will be filled with

H2. At later times, the overall hydrogen diffusion is dominated by the

slower diffusion inside the poly-gate and the model behaves just like

the standard H2-RD model. One might suspect that the hydrogen

stored inside the oxide, where we have assumed the diffusivity to

be larger, modifies the relaxation behavior. Under certain conditions

this is indeed the case, with undesired properties, though, as shown

in Fig. 14. For large stress times, most hydrogen is stored in the

poly and the model predicts the same relaxation as the RD model.

Thus, in order to see the influence of the two regions we have to

look at shorter stress times, in our particular case ts = 10s and ts =
100s, where the population in both regions is of the same order of

magnitude. However, despite the fact that the shape of the relaxation

curve does not agree with measurement data, since the relaxation is

determined by both reservoirs, it depends on the ratio of the reservoir

275



10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Normalized Relaxation Time  ξ

0

0.2

0.4

0.6

0.8

1

R
el

ax
at

io
n
 F

u
n
ct

io
n
  
r(

ξ)

D
1
/D

2
 = 10

5

D
1
/D

2
 = 10

3

D
1
/D

2
 = 10

2

D
1
/D

2
 = 10

1

D
1
/D

2
 = 1 (RD)

10
-6

10
-4

10
-2

10
0

10
2

Stress Time  [s]

10
-3

10
-2

10
-1

∆
V

th
  

[a
.u

.]

t
1/6

t
s
 = 100 s

t
s
 = 10 s

Fig. 14: Numerical simulation of a generalized RD model with two

different diffusion coefficients in the oxide and poly. For this particular

set of parameters, no difference is visible during the stress phase, while

the relaxation behavior slows down and displays non-universal humps.

occupancies, which changes with time and consequently results in a

non-universal relaxation as is clearly visible in Fig. 14.

B. Two-Interface RD Model

The two-interface model assumes that atomic hydrogen is released

from the silicon/oxide interface which then diffuses through the thin

oxide and depassivates defects at the oxide/poly interface [9, 36]. The

creation of defects at the opposite interface is supported by SILC

measurements [9]. The hydrogen from the oxide and the released

hydrogen at the oxide/poly interface diffuse as H2 through the poly

and result in an overall power-law exponent of 1/6 at large times.

It has been reported that such a two-interface model may predict a

faster recovery compared to the standard RD model [36]. For this to

be the case, the amount of ’fast’ hydrogen stored in the oxide must

be of the same order of magnitude compared to the ’slow’ hydrogen

stored in the poly. As in the case of the two-region RD model, it is

again possible to modify the relaxation behavior to a certain extent,

see Fig. 15. In this case the relaxation can be made faster than with

the standard RD model because the ’fast’ hydrogen concentration

inside the oxide is saturated, resulting in a shift to smaller normalized

relaxation times ξ on the universal plot. However, just as with the

two-region model, the resulting relaxation is not universal, as the ratio

of these two hydrogen storage areas changes with time, see Fig. 15.

C. Explicit H-H2 Conversion RD Model

It has been reported that measurements display a power-law

exponent of 1/3 during the initial stress phase [8, 17]. This has been

explained by an extended RD model which explicitly accounts for the

dimerization of H into H2 [17], rather than assuming an instantaneous

transition, in addition to the diffusion of both hydrogen species.

∂ [H]

∂ t
= kH2

[H2]−kH[H]2 (17)

Depending on the values of kH2
and kH, either pure H or H2 kinetics

can be observed. In addition, a regime with the aforementioned
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Fig. 15: Numerical simulation of the two-interface RD model relaxation

behavior. Although faster relaxation than with the standard RD model

is possible, the relaxation is not universal. In order to obtain a visible

influence on the relaxation behavior, the hydrogen stored in both regions

has to be of the same order of magnitude, which has a detrimental

influence on the power-law slope during the stress phase.
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Fig. 16: Numerical simulation of the generalized RD model with explicit

H to H2 conversion. During the stress phase, the model gives power-

law exponents known from the H and the H2 models, in addition to a

transitional region with n = 1/3, while the relaxation behavior cannot be

influenced by any of the available parameters.

transitional power-law exponent of 1/3, which eventually changes

to 1/6, is possible. Since measurement data suggests a long-term

exponent closer to 1/6 than to 1/4, the parameters have to be chosen

in such a way that the total amount of stored [H2] is much larger than

[H]. One might conclude from this that the two distinct reservoirs of

H and H2 may allow for a modified relaxation behavior. However,
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this is not the case for the simple reason that the model stays within

the limits set by pure H and H2 behavior, just as during the stress

phase. Since the relaxation of both species is practically equivalent,

no influence on the relaxation behavior is obtained from such a

model, see Fig. 16.

D. Final Notes On Reaction-Diffusion Models

We have shown that irrespective of the extensions applied to

the RD model, the recovery behavior cannot be described with the

published models in their present form. The fact that some OTF

measurements and the corrected MSM measurements give exponents

of around n = 0.15, which is close to the value predicted by

the H2 based RD model (n = 1/6), should not let one arrive at

the conclusion that the RD model is consequently reasonable. In

particular, we think one has to be extremely cautious with a view

point that the RD model correctly covers the stress part while only

the relaxation part needs to be refined. The point to make here is

that the 1/6 exponent during the RD stress phase is a result of a

delicate interplay between the forward and backward reaction [17].

Without the backward reaction, which inserts the ’diffusion-limited’

component into the RD model, the forward reaction alone would

result in n = 1. It is only during relaxation, where the forward rate

is dropped, that the poor performance of the RD reverse reaction

becomes visible. Consequently, we do not see any reason to believe

the very same reverse reaction to be valid during the stress phase and

there constructively changing the reaction-limited exponent of n = 1

to the ’correct’ diffusion-limited value of n = 1/6.

VII. DISPERSIVE NBTI MODELS

It has been clearly shown in the previous sections that the RD

model predicts 80% of the relaxation to occur within 3 decades,

while in reality relaxation is observed to span more than 10 decades

[5–7]. This indicates some form of dispersion in the underlying

physical mechanism(s). Various forms of dispersion have already

been introduced into NBTI models based on either (i) diffusion [3–

5], (ii) hole tunneling from/into states in the oxide [16], and (iii)

reaction rates at the interface [2, 37]. The models suggested to capture

these mechanisms will be benchmarked in the following using the

universality as a metric.

A. Reaction-Dispersive-Diffusion Models

First, we consider generalized RD models based on dispersive

transport of the hydrogen species [5, 38]. Interestingly, published

results based on dispersive transport equations have demonstrated

both an increase [15, 36, 39] as well as a decrease [5, 40, 41] of

the power-law exponent with increasing dispersion. This discrepancy

has been identified to be a consequence of the different boundary

conditions employed in the reverse reaction at the interface [38].

Since dispersive transport is a consequence of most of the hydrogen

being trapped in a broad distribution of traps, exponential in many

models, one might either consider the total hydrogen concentration

(Hit = Htot), that is include both mobile and trapped hydrogen to

result in a decreased exponent, or, just allow the mobile hydrogen

(Hit = Hc) to passivate dangling bonds, which results in an increased

exponent. A previous analysis of the dispersive transport equations [5]

was based on various assumptions (such as pulse-like excitation [38],

uncertainties in the boundary conditions [38], and a neglected history

of previously trapped hydrogen atoms during relaxation) which led

to only approximative solutions. As it turned out, a more rigorous

derivation is rather involved. An approximation for ξ < 1 (tr < ts,

as normally encountered during measurements), is given by (4) with
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Fig. 17: Universal relaxation as predicted by the full numerical solution

of the dispersive transport models for various values of the dispersion

parameter α . Also shown is the data from Reisinger as a reference. The

model with Hit = Htot always stays below the diffusive (RD) limit, while

the model with Hit = Hc always stays above. The diffusive limit is like a

watershed which cannot be crossed by either model. Also note that the

Hit = Htot model appears to have a limit different from unity for ξ = 0,

which is a result of an extremely fast relaxation triggered by the hydrogen

stored right at the interface.

B and β depending on the boundary condition and the dispersion

coefficient α . Interestingly, for ξ > 1 the behavior changes and

different values for B and β have to be used (cf. Fig. 17).

In order to avoid any uncertainties inherent in approximate analyt-

ical solutions, we numerically solve the full time-dependent multiple

trapping model [42] to allow for an accurate description of both the

stress and the relaxation phase. The results shown in Fig. 17 display

a much broader range of possible relaxation characteristics compared

to classic diffusion. Nevertheless, the dispersive transport models in

their present form are not able to fully explain the experimentally
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Fig. 18: Top: The simple dispersive hole trapping model used in [16]

can be fit to an individual relaxation curve (shown is the ’log’ variant

of Fig. 5) but does not scale universally and gives a very small slope

during the stress phase. Bottom: The dispersive rate model can be used

to fit the data for an individual relaxation curve, the power-law variant of

Fig. 5 at ts = 100s in this case, but does not scale universally either. In

addition, the calibrated model gives a rather strong curvature during the

stress phase with a too small power-law exponent n ≈ 0.03, the variance

of the rate coefficients had to be set to a value considerably larger than

reported (σA = 0.211eV and σD = 0.264eV, compare [43, 44]), and in

general the model cannot be fit to both the stress and relaxation phase.

observed relaxation. Also note that the Hit = Htot model appears to

have a limit different from unity for r(ξ → 0). This is a result of the

extremely fast relaxation triggered by the hydrogen stored directly

at the interface. The exact shape of this initial hump (not shown)

depends on the stress time and the width of the interfacial layer,

thereby rendering this model non-universal.

B. Dispersive-Rate Coefficients

Next we consider reaction-limited models using a dispersion in

the rate coefficients [2, 37]. Huard et al. [2] suggested that the

forward rate is dispersive and that the generated interface states do

not relax at all, or at least not at shorter relaxation times [27]. A

numerical solution of a generalized model which considers both a

dispersive forward and reverse reaction [43] results in an apparently

very flexible model which can be nicely fit to a single relaxation

curve. Unfortunately, however, the excellent fit during the single

relaxation phase adversely affects the quasi-power law exponent

during the stress phase which reduces to very small values (n≈ 0.03).

In addition, the model does not scale universally. This is demonstrated

in Fig. 18.

C. Dispersive Hole Trapping Models

In addition to the creation of interface states, trapped charges have

been made responsible for the observed threshold voltage shift during

NBT stress. In particular it has been argued that these charges are

responsible for the fast component observed both during stress and

relaxation [2, 16]. A simple phenomenological hole trapping model

has been put forward by Yang et al. [16] based on a broad distribution

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

Normalized Relaxation Time  ξ

0

0.2

0.4

0.6

0.8

1

R
el

ax
at

io
n

 F
u

n
ct

io
n

  
r(

ξ)

RD
t
s
 = 100 s

t
s
 = 10 s

t
s
 = 1 s

t
s
 = 0.1 s

Reisinger

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Stress Time  [s]

10
-4

10
-3

10
-2

10
-1

∆
V

th
  
[a

.u
.]

∆Q it

∆Qox

∆Q
it
+∆Q

ox

t
0.21t

0.14

Fig. 19: Relaxation as predicted by the Tewksbury model. The model

can be fit to the data for an individual relaxation curve, shown is the

’log’ variant at 100s, but does not scale universally. Also, the excellent

fit comes at the price of a very small power-law exponent at early times

during the stress phase, in contradiction to Fig. 4 of [7]. It is not possible

to fit both the stress and relaxation phases at the same time.

of trapping times. Again, although a single relaxation curve can be

nicely fit, the model does not scale universally either, see Fig. 18.

A more detailed hole trapping model has been derived by Tewks-

bury [32] based on the various possible transitions from conduction,

valence, and interface states into bulk oxide traps. Its use for NBTI

has been suggested by Huard et al. [18] to cover the recoverable part

of the degradation. For the following discussion we limit ourselves to

the component of the model which results from charge transfer from

an interface state into an oxide trap and back to the interface state, the

other suggested mechanisms behave similarly and follow analogously.

During stress, the trapped charge accumulated via transfer from

the interface states can be given as S(ts) ≈ A ln(ts/τ0s) while the

absolute relaxation is given by R(ts,tr)≈A ln(tsτ0r/(trτ0s)). The latter

is an approximate form of (10) and considers two different time-

constants for capture and emission. Using the previous two relations,

the relaxation function is given by

r(ts,tr) ≈ 1− ln
( tr

τ0r

)

ln−1
( ts

τ0s

)

, (18)

which cannot be written as a function of ts/tr and is consequently

not universal. The full numerical solution of the Tewksbury model is

given in Fig. 19 together with an excellent fit for a single relaxation

curve. However, in order to obtain such a fit, the logarithmic behavior

of the hole trapping component results in a slope close to zero during

the stress phase. Also shown in Fig. 19 is a permanent component

modeled by a numerical solution of a dispersive forward rate only,

as suggested by Huard et al. [18]. Note however, that after a certain

stress time the damage will be dominated by ∆Qit and the observed

relaxation given only through ∆Qox will be minimal. This is also not

compatible with the data at hand where even at large stress times

considerable relaxation can be observed.
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Fig. 20: Best universal scaling was obtained by combining dispersive

hydrogen transport with dispersive hole transport [45]. Universality is

obtained when the hole trap density is determined by the trapped

hydrogen which is assumed to create hole-traps.

D. Multiple Mechanisms

Since none of the studied mechanisms can fully capture the

universal relaxation, we have considered various combinations in our

numerical framework. In order to obtain a universal behavior, some

points need to be considered. Consider the case that the total observed

threshold voltage shift is the result of two independent mechanisms,

that is, S = S1 +S2. During relaxation one observes R = S1r1 +S2r2

and the normalized relaxation function is given by r = ρr1 +(1−ρ)r2

with ρ = S1/(S1 +S2). If the two degradation mechanisms progress

differently with time, ρ will be a function of ts and r cannot be

universal. We thus conclude that for the relaxation to be universal, the

two mechanisms need to be tightly coupled, that is, S1/S2 = const, or

at least roughly constant within the range of measured ξ and within

the measurement tolerance. Another option is that both mechanisms

relax equally, r1 ≈ r2.

Promising results have been obtained by combining dispersive

hydrogen transport with a dispersive hole transport model [45]

(cf. Fig. 20). This combination is consistent with qualitative state-

ments found in literature [2, 9, 16]. In order to make the fast hole

trapping component universal, the hole trap density was determined

from the trapped hydrogen density in a self-consistent manner.

Nevertheless, this is just a first attempt and the microscopic details

of such a model need to be considered in greater detail.

VIII. CONCLUSIONS

We have thoroughly analyzed the relaxation of NBT stress induced

damage using data from various groups. The observed universal

relaxation behavior has been quantified and modeled using possible

empirical expressions. It has been demonstrated that data obtained

via conventional MSM sequences can be analytically described as

a function of the delay introduced during the measurement. In

particular, this analytic expression allows one to reconstruct a

corrected ’true’ degradation curve. Using this corrected curve, it

might be possible to more accurately estimate the time-to-failure.

We have then used the relaxation behavior and in particular the

universality as a benchmark for existing NBTI models. There we have

found that none of the existing models is capable of reproducing both

the stress and the relaxation phase with the same set of parameters.

While the classic reaction-diffusion model scales universally, it pre-

dicts relaxation to occur mainly during three decades, in contradiction

to detailed relaxation measurements available in literature which span

more than ten decades. No improvement could be found in extended

RD models using two regions, a second interface, or an explicit

transition from atomic to molecular hydrogen. Models based on an

extension of the reaction-diffusion model with dispersive transport,

somewhat improve on the situation but are still not able to cover

the whole relaxation regime. Other dispersive models, like dispersive

forward and backward rates or dispersive hole-trapping models allow

one to fit an individual relaxation curve only but are not universal. In

addition, we were not able to describe both the stress and relaxation

phase with the same set of parameters. This indicates a significant

gap in our current understanding of NBTI.

We particularly wish to point out that it is of utmost importance not

to consider the inaccuracies of existing models during the relaxation

phase of secondary importance compared to the stress phase. The

reason for this is only partially related to the frequently quoted

fact that continuous DC stress is rarely observed in a circuit and

that duty-cycle dependent corrections have to be applied. The more

important point we want to make here is that during the stress

phase the relaxation mechanism in existing models always interacts

with the degradation mechanism, forming the overall time behavior

during the stress phase. It is only during the relaxation phase, where

the degradation mechanism is absent, that the relaxation mechanism

can be studied in full detail, despite the difficulties arising during

measurements. We therefore stipulate that a more complete NBTI

model needs to focus on the relaxation phase first before attempting

to cover the stress phase as well.
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