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Abstract

Scientific computing requires efficient specification and handling
of structure generation and associated modeling tasks. A generic sci-
entific simulation environment was developed to ease these tasks by
homogeneous specification of data structures in a dimensionally and
topologically neutral way. The concept of fiber bundles is used to
separate data structure issues from quantity management. To explain
the introduced mechanisms the fiber notation of the Möbius stripe
and the Hopf fibration are given with our environment.

1 Introduction

The approach taken with our generic scientific simulation environment (GSSE
[Heinzl et al., 2006a]) extends concept based programming of the STL to ar-
bitrary dimensions similar to the grid algorithms library (GrAL [Berti, 2000]).
In addition, an efficient notation for data structures and mathematical con-
cepts is obtained. The main difference to GrAL is the introduction of the
concept of fiber bundles [Butler & Bryson, 1992], which separates the mech-
anism of application design into base space and fiber space properties. The
base space is modeled by a CW-complex [Benger, 2004], whereas the fiber
space is modeled by a generic data accessor mechanism, similar to the cursor
and property map concept [Abrahams et al., 2003].



1.1 Related Work

In the following some work related to our approach is briefly presented.
The Grid Algorithms Library, GrAL [Berti, 2000] was one of the first

contributions to the unification of data structures of arbitrary dimension
for the field of scientific computing. A common interface for grids with a
dimensionally and topologically independent way of access and traversal was
designed.

The Fiber Library [Benger, 2004] implements several mechanisms for
base and fiber space properties. The base space is modeled by a CW-complex.
For the fiber space several mechanisms are offered to handle various data
models with a minimum of data specification.

For the GSSE we have developed a consistent data structure interface
based on algebraic topology and order theory. With this interface specifi-
cation we can make use of several libraries, e.g., GrAL. Another important
advantage is that the GSSE is mainly built for a library centric application
design, which means that application design is greatly supported.

1.2 Theory of Fiber Bundles

In this section we briefly overview the concept of fiber bundles [Benger, 2004]
as description for data structures of various dimensions and topological prop-
erties.

Let E, B be topological spaces and π : E → B a continuous map. Then
(E, B, π) is called a fiber bundle, if there exists a space F such that the
union of the inverse images of π of a neighborhood Ub ⊂ B of each point
b ∈ B is homeomorphic to Ub × F , whereby the homeomorphism φ has to
be such that the projection pr1 of Ub × F yields Ub again and the following
diagram commutes:

Figure 1: Structure of fiber bundles.



We have introduced [Heinzl et al., 2006b] a common interface for various
data structures of arbitrary dimension. The advantages of our approach
are similar to the cursor and property map but differ in several details as
given in Table 1. The similarity is that both approaches can be implemented
independently. The main difference is that the fiber bundle approach equips
the fiber space with more structure, e.g., storage of more than one value
corresponding to the traversal position, and preservation of neighborhoods.
These features are especially useful in the area of scientific computing, where
different data sets have to be managed, e.g., multiple scalar or vector values
on vertices, faces, or cells.

cursor and property map fiber bundles
isomorphic base space no yes
traversal possibilities STL iteration cell complex
traversal base space yes yes
traversal fiber space no yes
data access single data topological space
fiber space slices no yes

Table 1: Cursor and property map compared to the GSSE approach.

As can be seen the concept of the cursor and property map can be extended
to the fiber bundle approach with additional properties and mechanisms.

1.3 Homogeneous Interface for Data Structures

We briefly introduce parts of the interface specification for data structures.
A full reference is given in [Heinzl et al., 2006b]. A formal concise definition
of data structures can therewith be derived as presented in Table 2.

data structure cell dimension cell topology complex topology
array/vector 0 simplex global
SLL/stream 0 simplex local(2)
graph 1 simplex local
grid 2,3,4,.. cuboid global
mesh 2,3,4,.. simplex local

Table 2: Data structure classification scheme based on the dimension of cells,
the cell topology, and the complex topology.



Examples of higher dimensional complexes for C++ with the GSSE notation
are given next.

cell_type<3, simplex> cell_s; // tetrahedron

cell_type<4, cuboid> cell_c; // hypercube

complex_t<cell_s, local> > base_s; //{1}

complex_t<cell_c, global> > base_s; //{2}

Here {1} describes an unstructured tetrahedral mesh and {2} describes a
cell complex based on hypercubes. In the following the poset structure and
a possible rendering of a four-dimensional simplex are presented. The poset
structure demonstrates the traversal capabilities of the GSSE data structure
interface.

Figure 2: Poset of a four-dimensional simplex.

Figure 3: Rendering of a four-dimensional simplex.



The poset of the four-dimensional cube is omitted due to the large number
of facets. Only one possible render image is given next:

Figure 4: Rendering of a four-dimensional cube.

2 Non-Trivial Data Structures

Next to the already presented data structures which can be specified by
CW-complex notation, several other non-trivial data structures exist. The
embedded language of GSSE was extended to directly support the specifica-
tion of several properties of data structures based on the structure of the fiber
bundle approach with the corresponding base and fiber space. The topolog-
ical structure of the corresponding space is given at compile-time, whereas
the number of elements is given at run-time.



2.1 Möbius Stripe

The Möbius strip is a famous example of a non-trivial fiber bundle with
B = S1 and F = R1 in an interval I = [0, 1]. The total space E can only
be written locally as the product of B and F . The trivial counterpart is the
infinite cylinder S1 ×R1, where the total space can be written globally. The
modeling with the GSSE is presented in the following code snippet with our
modeling language embedded within C++.

// compile time

//

base_space<S<1> > base_s;

fiber_space<I<1> > fiber_s;

total_space<base_s, fiber_s> total_s;

// run time

//

base_s bs(100);

fiber_s fs(0,1,f(bs));

The run-time part specifies the number of discretization points for the circle,
whereas the fiber is specified with the interval length and the f(bs) which is
a simple function object describing the functional dependence of the interval
of the fiber space. The following picture depicts a simple OpenGL rendering.

Figure 5: Visualization of the Möbius stripe based on the GSSE specification.



3 Hopf Fibration

Another example of an efficient fiber bundle notation is the Hopf fibration.
The base space is modeled by S2 (the hull of a sphere), the fiber space by S1,
and therewith the total space is modeled by a S3 (hypersphere). The Hopf
fibration can be expressed very efficiently within the GSSE.

// compile time

//

base_space<S<2> > base_s;

fiber_space<S<1> > fiber_s;

total_space<base_s, fiber_s> total_s;

// run time

//

base_s bs(100,100);

fiber_s fs(100);

The number of discretization points is 100 in this case, which is feasible for
visualization. The visualization of the Hopf fibration [Lyons, 2003] is more
complex than the Möbius stripe due to the higher dimensional base space
and fiber space. We use a stereographic projection where the S3 can be seen
in the three-dimensional space. The S1 fibers are therewith projected as
circles in R3 and depicted in Figure 6 where Figure 7 presents two possible
projections.

Figure 6: Projection sequence from S2 → R3 (left), S1 → R4 (middle), and
finally into R3.



Figure 7: Left: a possbile stereographic projections of a discretized Hopf
fibration. Right: visualization of a single circle of the base space.

4 Conclusions

The theory of fiber bundles separates the properties of the base space and
the fiber space greatly. By formal specification of a common data structure
interface based on algebraic topology a wide variety of generic environments
can be used interoperably. GSSE supports the efficient notation of fiber
bundles and accomplishes therewith a powerful mechanism to specify non-
trivial data structures efficiently.
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