
Visualisation of Polynomials
Used in Series Expansions

Philipp Schwaha, Carlos Giani,
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Abstract

Boltzmann’s Equation describes a myriad of phenomena from gas and
fluid flow to electrons in semiconductors and hence plays an essen-
tial role in todays physics. However, calculating a solution to this
seven-dimensional partial differential equation is very difficult. The
high dimensionality of the equation poses a problem for its solution
as traversal mechanisms for these high dimensions are not generally
available. We present spherical harmonics which serve as the basis
for an alternative, direct solution method to Boltzmann’s equation.
Here the solution is calculated by expanding the it into spherical har-
monics and determining the corresponding coefficients. We visualise
the spherical harmonics themselves, their changes due to the recursion
relations, and compare their evolution.

1 Introduction

Series expansion has been a common and powerful method for the solution
of complex equations for a long time. Polynomial series are often used for
this task, as they obey clear rules and can be calculated with relative ease.

Boltzmann’s equation which can be employed to describe the physics be-
hind a large variety of problems, can also be treated in this manner. While
it was originally incepted to govern the distribution of particles in gasses and



fluids, it can also be used to describe the distribution of electrons in semi-
conductors [Vecchi et al., 1997] and in fact any phenomenon which involves
particles that are not in a kind of thermodynamic equilibrium.

Spherical harmonics [Abramowitz & Stegun, 1964], which are themselves
based on associated Legendre polynomials, are chosen for expansion. The
visualisation of these polynomials and their specifications are the topic of
this paper along with a means of solving the equation system resulting from
the aforementioned expansion.

2 Boltzmann’s Equation

As already mentioned, Boltzmann’s equation can be used to describe electron
transport in semiconductors. It is commonly given in the form presented in
Equation 1.

∂

∂t
f + ~v · gradrf + ~F · gradkf =

∂

∂t
f |collisions (1)

Its solution depends not only on time and position (three dimensions) of
the particle, but also on the particle’s momentum (three dimensions), thus
resulting in a seven-dimensional space in total. Due to the complexity inher-
ent in this seven dimensional first order partial differential equation (PDE),
simpler models, such as the drift-diffusion model which forms a mainstay
of technology computer aided design (TCAD), are often derived from it
[Selberherr, 1984] in order to increase calculation efficiency.

The ongoing development of smaller and faster semiconductor devices
and circuits makes the solution of Boltzmann’s equation even more press-
ing, as physical phenomena become influential, which simpler models cannot
accommodate.

In addition other fields of research, which make use of Boltzmann’s equa-
tion, such as gas dynamics or weather simulations, cannot easily make sim-
plifications. It is therefore becoming an increasingly important matter to
obtain a rigorous solution of this equation.

The established method of solving Boltzmann’s equation in the field
of TCAD is the Monte Carlo method [Jungemann & Meinerzhagen, 2003].
However, this method is computationally expensive and the statistical na-
ture can cause problems in several situations. It is therefore desirable to
also have different solutions methods available [Liotta & Struchtrup, 2000].
Series expansion using spherical harmonics offers one powerful alternative.



To this end the distribution function f is expanded using spherical harmonics
Y m

n in the following way

f =
∞∑

n=0

n∑
m=−n

fm
n (~r, k, t) Y m

n (ϑ, ϕ) (2)

and inserted into Equation 1. This procedure is further discussed in Section 4.

3 Spherical Harmonics

Several fields of application from quantum mechanics, to investigations re-
garding gravity [S. T. Sutton, 1991] make use of spherical harmonics denoted
as Y m

n (ϑ, ϕ). In general they can be easily applied to problems with spherical
symmetries, which can be expanded to multi-poles using spherical harmonics.

The expansion using spherical harmonics can also be viewed as a gener-
alisation of a Fourier series expansion which works very well with periodic
phenomena as found in semiconductor crystals. It is therefore obvious to
apply spherical harmonics expansion to the momentum space of electrons,
described by the vector ~k, which is derived from this periodic structure.

The affinity to spherical symmetries becomes evident, when considering
that spherical harmonics form the angular part of the solution of Laplace’s
equation in spherical coordinates (Equation 3).
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Spherical harmonics form a complete system of orthogonal functions. In this
work we make use of a normalised form which reads:

Y m
n (ϑ, ϕ) = (−1)m

√
2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos ϑ) eimϕ (4)

Pm
n are associated Legendre polynomials [Abramowitz & Stegun, 1964]. Fig-

ure 1 shows an example of a spherical harmonic.
Recursion relations which link a spherical harmonic Y m

n (ϑ, ϕ) to other
spherical harmonics Y b

a (ϑ, ϕ) of different order b and/or degree a, are among
the properties inherited from the Legendre polynomials. A simple recursion



Figure 1: Spherical harmonic Y m
n with n = 5 and m = 2.

for the index n is:
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A visualisation of this recursion relation is given in Figure 2. An example
for a more complex recursion also involving the index m is
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It should be noted that recursions involving m are considered numerically
unstable [Deuflhard, 1976], but can still greatly reduce effort, when they are
used in analytical expressions. Figure 3 gives a graphical representation of
this recursion.

Numerical stability has to be kept in mind not only when calculating
spherical harmonics by recursion relations. The faculty in the normalising



Figure 2: The recursion relation given in Equation 5. The upper left figure
shows the result for n = 8 and m = 2, the upper right figure for n = 10 and
m = 2. The lower left figure depicts the result of the weighted addition and
corresponds to cos ϑ Y 2

9 and the lower right figure shows Y 2
9



Figure 3: The recursion relation given in Equation 6. The upper left figure
shows the result for n = 6 and m = 2, the upper right figure for n = 6 and
m = 4. The lower left figure depicts the result of the weighted addition and
corresponds to 1

sin ϑ
Y 3

5 and the lower right figure shows Y 3
5



factor also requires special attention for implementation, to avoid erroneous
results. Simple algebra can be used to eliminate common factors in the
denominator and the enumerator and data types with extended range can
be used in the calculations, but these measures only push the limit of the
reliably calculable spherical harmonic. While overflows of numerical values
may be detected for some data types, it is not possible to discover numerical
issues of recursion relations.

The left part of Figure 4 shows a spherical harmonic deformed by numer-
ical errors. The image on the right hand side shows the correct shape of the
spherical harmonic.

Figure 4: Two images showing Y 2
21. The spherical harmonic on the left has

been calculated incorrectly by not taking proper care of numerics. The image
on the right shows the result of a correct calculation.

The order of the expansion required to obtain a given accuracy depends on
how well the expanding functions mimic the symmetries and the anisotropy of
the solution. While it is possible to perform all calculations without any idea
of the shape of the spherical harmonics, a much better understanding can be
achieved when the shapes and symmetries of the expanding functions can be
grasped. Visualisation of the spherical harmonic basis functions themselves
is very valuable to accomplish this task.

4 Application

An equation system for the weighting factors of the spherical harmonic can
be obtained by inserting the spherical harmonic expansion into Equation 1,



multiplying with conjugate spherical harmonics Y
m

n (ϑ, ϕ), and integrating
over the orthogonality interval. Inserting the spherical harmonic expansion
into Equation 1 and assuming that the velocity is isotropic results in:
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The integration is simple, because the Y m
n (ϑ, ϕ) are orthogonal. In case the

velocity ~v is anisotropic, recursion relations can be used to obtain a form that
is also quite simple to integrate. The integration of Equation 7 leads directly
to the matrix for the coefficients of the spherical harmonics expansion.

For the solution of Boltzmann’s equation it is necessary on the one hand
side to be able to integrate spherical harmonics in order to obtain the entries
for the system matrix. On the other hand side it is necessary, to be able to
evaluate the spherical harmonics efficiently to reassemble the solution using
the appropriate coefficients.

The locality of integration and evaluation are shown in Figure 5. Evalua-
tion yields a single point on the surface of the spherical harmonic. Integration
involves the whole structure of the spherical harmonic.

5 Implementation

Our implementation of spherical harmonics makes use of several modern pro-
gramming concepts such as template meta-programming to ease specification
and ensure high performance. The structure of a spherical harmonic can be
exploited at compile time to greatly simplify runtime calculations. This is ac-
complished by implementing recurrence relations as presented in Equation 5
and Equation 6 using template mechanisms [Abrahams & Gurtovoy, 2004],
[Veldhuizen, 2000].

Integration of two terms containing spherical harmonics can be simplified
tremendously due the orthonormality of the spherical harmonics. Because of
the use of the semantic structural information available at compile time, run
time evaluations of the resulting expressions are greatly simplified compared
to a full integration which would otherwise have to be performed. The fol-
lowing C++ source code illustrates how to specify two spherical harmonics
of different degree and order at compile time



Figure 5: The locality of the operations of evaluation and integration.

// definition of structure

// spherical_harmonic<n,m>

spherical_harmonic<2,3> sp_2_3;

spherical_harmonic<3,0> sp_3_0;

Specifying degree and order defines the structure of the spherical harmonics
and determines their interactions. Integration (indicated by the line sur-
rounding the spherical harmonic in Figure 5) can make use of this structure.

// integration at compile time

integrate<sp_2_3, sp_3_0> integral_a;

integrate<sp_2_3, sp_2_3> integral_b;

// integral_a::value = 0

// integral_b::value = 1

Evaluation of single values as shown by the dot in Figure 5 can be accom-
plished in the following manner:

// evaluation at run time

std::cout << sp_2_3(0,0) << std::endl;



6 Conclusions

We have presented visualisations for spherical harmonics and their recurrence
relations. Visualisation provides a quick and efficient way to determine, if
recurrence relation based calculations are correct. It thereby provides a valu-
able tool for developing and debugging applications based on these methods.
It also shows how naive implementations result in erroneous results, due to
numerical issues.
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