Keywords: Simulation methodology, Boltzmann transport equation, scientific computing, high performance computing, programming paradigms, probabilistic method, partial differential equations.

Abstract: We discuss methodologies to obtain solutions to complex mathematical problems derived from physical models. We present an approach based on series expansion, using discretization and averaging, and a stochastic approach. Various forms based on the Boltzmann equation are used as model problems. Each of the methodologies comes with its own strengths and weaknesses, which are briefly outlined. We also provide short code snippets to demonstrate implementations of key parts, that make use of our generic scientific simulation environment, which combines high expressiveness with high runtime performance.

1 INTRODUCTION

The different natures and complexities of various equations used to model physical phenomena has spawned a wide variety of different solution methodologies. The corresponding solution techniques usually exhibit unique characteristics and cover different aspects of the total solution space.

The methodologies evolved due to the great diversity of needs encountered in application and theory with the highly relevant goal to cope with the limitations of available computing resources.

The continuous introduction of newer, more sophisticated models encourages the use of different methodologies to best probe the behavior of these new models. It should also not be underestimated, that for all the mathematical elegance which many of the new models may posses, the implementation is often very tedious due to limitations caused by the notation available in programming languages. Furthermore, the constant influx of complexity prohibits any squandering of computational resources, because the added complexity easily outgrows the evolution of computational power. It is therefore of utmost importance to provide resource aware means to realize as many of the different approaches to solve a given problem as efficiently as possible.

In answer to this need for an advanced simulation environment, offering high performance as well as high expressiveness, we have developed the generic scientific simulation environment (GSSE), which is a implements concepts suitable for scientific computing offers facilities to implement the various simulation methodologies and guaranties high performance (Heinzl et al., 2006a). Furthermore, it provides great freedom in the choice of dimension and topology. This is accomplished by combining several programming paradigms.

In the following we review several established simulation methodologies and discuss their different characteristics using examples based on the Boltzmann equation, which can easily be transferred to other fields of research. In the following we distinguish the following simulation methodologies:

- Series expansion schemes: choose an analytic base to parametrize the solution space.
- Discretization schemes: project the original, still continuous problem into a finite space of algebraic equations.
- Stochastic schemes: generate local statements which use statistics to create traces in the solution space.

We show that a varying interest in the level of detail...
of the solution and the amount of affordable computational resources are best met by different simulation methodologies.

2 THE GENERIC SCIENTIFIC SIMULATION ENVIRONMENT

Our approach of transforming different methodologies into high performance applications is based on the GSSE. It provides a domain specific embedded language for mathematical notation as well as data structures directly within C++, which greatly eases the specification of formulae and provides the functional dependencies inherent in the formulae.

Another important part of the environment is to offer consistent interfaces by using concept based generic programming to achieve interoperability between different library approaches. Furthermore, we developed a consistent data structure interface for all different types of data structures (STL (Austern, 1998), BGL (Siek et al., 2002), GrAL (Berti, 2002), CGAL (Fabri, 2001)) based on algebraic topology and poset theory (Heinzl et al., 2006b). With this interface specification we can make use of several already available libraries within the GSSE. High interoperability and code reuse can thereby be accomplished without incurring overhead.

Algebraic topology is used for the interface and traversal specification further separating the cell topology from the complex topology. Code complexity is thereby reduced greatly, while at the same time code reuse is increased. Figure 1 depicts the topological properties of a cuboid cell and the corresponding projection into a partially ordered set (poset).

Using this poset it is possible to identify all interdimensional objects such as edges and facets and their relations to the cell. Therefore, traversal of all of these different objects is completely determined by this structure and the vertex on edge, vertex on cell, and edge on cell traversal up to the dimension of the cell can be derived automatically by the compiler itself without the need of user intervention.

In addition to the cell topology the complex topology can be derived in order to best support a unique characterization and orthogonal implementation. A basic example is depicted in Figure 2, which presents the structure of a three-dimensional cell complex. Only locally neighboring cells can be traversed by this data structure, which can be seen in the poset on the right hand side. The number of elements in the meta-cell’s subsets is bounded by a constant number, which is unique for each type of data structure. The term meta-cell is used to describe various subsets with a common name, e.g., the singly linked list uses two elements per meta-cell, later stated as local(2) and called forward concept in the STL.

In order to demonstrate the equivalence of our data structure and the STL data structures a simple code snippet is presented. The corresponding and required typedef definitions are omitted:

```cpp
cell_type<0, simplex> cells_t;
complex_type<cells_t, global> complex_t;
long data_t;
container_t<complex_t, data_t> container;
```

// is equivalent to the STL type
std::vector<data_t> container;

Equivalence of Data Structures

The distinct areas of scientific computing yield themselves differently well to implementations using one of the many programming techniques. In several cases the demand for a specific programming paradigm can be observed. We provide a short overview of several programming paradigms and their advantages:

- Object-oriented programming: is the close interaction of content and mechanisms related to the particular content. Algorithms can not be specified independently of object structures.
- Functional programming: is inherently parallel and side-effect free. However, most functional programming languages suffer from great performance shortcomings.
- Generic programming: is the glue between object-oriented programming and functional programming.

Many difficulties encountered in conventional programming can be circumvented with the approach of using the paradigms shown above appropriately at the same time. Functional programming enables
great extensibility due to the modularity of function objects. Generic programming and the corresponding template mechanisms of C++ offer high performance combined with parametric polymorphism. This means that arbitrary data structures of arbitrary dimensions can be used.

GSSE has been implemented making strong use of the generic programming to reduce the amount of code which has to be maintained. The realization of the generic programming facilities in C++ as templates ensures high run time performance, as the compiler is free to generate the most appropriate code. As the focus of this paper is the comparison of different simulation methodologies, performance details (Heinzl et al., 2006a) have to be omitted due to space constraints. As already pointed out the interfaces of GSSE are compatible to the STL, which facilitates code re-usability enormously.

3 BOLTZMANN’S EQUATION

From the many different equations used to describe our physical reality, Boltzmann’s equation has shown to be one of the most versatile. Originally conceived to govern the dynamics of particles in gases and fluids, it is for instance also used to describe the distribution of electrons in semiconductors. Due to the macroscopic nature of Boltzmann’s equation makes it also well suited for the development of simpler models, such as the drift-diffusion model.

Boltzmann’s equation for electron transport in semiconductors, as given in Equation 1, is the base for many calculations regarding microelectronics (Selberherr, 1984).

\[
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \mathbf{F} \cdot \nabla_p f = \frac{\partial f}{\partial t}_{\text{collision}}
\]

(1)

Here \(f \) is the distribution function which depends on the location (\(r \)) as well as the momentum (\(p \)). \(\mathbf{v} \) is the velocity of the electrons, while \(\mathbf{F} \) denotes a force acting on the electrons. The right hand side of Equation 1 describes the changes of the distribution function due to collisions. Macroscopic quantities such as the concentrations of the electrons can then be calculated from the distribution function by integration, such as

\[
n = \int f \, d^3 p
\]

The term \(\mathbf{v} \cdot \nabla f \) describes the displacement of the distribution due to the velocity of the electrons. The velocity is obtained from the electron’s dispersion relation \(\varepsilon(\mathbf{p}) \) as

\[
\mathbf{v} = \nabla_p \varepsilon(\mathbf{p})
\]

(2)

thereby linking the dispersion relation explicitly to the distribution function.

The term \(\mathbf{F} \cdot \nabla_p f \) links an external force \(\mathbf{F} \) acting on the electrons to their distribution. It can be expressed as \(\mathbf{F} = q \mathbf{E} \) with \(q \) being the elementary charge and \(\mathbf{E} \) being the electric field.

The term describing the collisions is often modeled in the form of

\[
\frac{\partial f}{\partial t}_{\text{collision}} = \frac{V}{(2\pi)^3} \int f(\mathbf{x},\mathbf{p}) S(\mathbf{p'}, \mathbf{p}) \, d^3 p'
\]

(3)

Where the terms \(S(\mathbf{p}, \mathbf{p'}) \) is the transitions from one momentum state \(\mathbf{p} \) to another \(\mathbf{p}' \). The various physical scattering mechanisms are modeled by adjusting these terms appropriately (Kosina, 2003).

4 METHODOLOGIES

Having introduced our framework and the basic equation under consideration we now present three different methodologies. Each of the methodologies has a different characteristic of the obtained solution and emphasizes different aspects of the computations. The choice of an appropriate methodology depends highly on the requirements placed on the obtained solution and its cost in terms of time and computational expense. It is therefore necessary to have an, at least basic, understanding of what a given methodology can accomplish.

4.1 Series Expansion Schemes

Unfortunately differential equations for which elegant solutions using closed form analytical functions exist, are a rare special case for models of physical phenomena.

The notion of obtaining a solution or at least an adequate approximation by analytical means, however, is highly attractive. In order to utilize this approach, it is necessary to thoroughly analyze the problem for exploitable properties, such as symmetries, and make use of them.

The old idea of series expansion provides the means to accomplish this goal. Here the function is represented as a sum of several terms:

\[
f = \sum_{i=a}^{b} c_i \beta_i
\]

The \(c_i \) are the coefficients for the base \(\beta_i \) of the expansion. Summation takes place for \(a - b \) values. In
theory a and/or b may be infinite to obtain an exact solution.

Since it is obviously not possible to evaluate an infinite number of summations, the series has to be truncated. An appropriate choice of β determines the accuracy of this solution method, when truncating the series at a given order. The better β is able to reflect the properties of the true solution, the more accurate the truncated solution becomes.

We now apply the method of series expansion to Boltzmann’s equation using spherical harmonics (Abramowitz and Stegun, 1964) for expansion. The spherical harmonics used are defined as:

$$Y_n^m(\theta, \phi) = (-1)^m \sqrt{\frac{2n + 1}{4\pi} \frac{(n - m)!}{(n + m)!}} P_n^m(\cos \theta) \ e^{im\phi}$$

With P_n^m being associated Legendre polynomials. The leading factor ensures the orthonormality of the spherical harmonics.

Expanding the distribution functions using spherical harmonics and using the physics governing the movements of electrons it is possible to obtain the following equation system for the left hand side of Boltzmann’s equation:

$$\sum_{s=-\omega}^{\omega} \sum_{i \in \text{vertices}} \text{div} g_s^i \int Y_s^m Y_i^m d\Omega + h \bar{F} \frac{\partial}{\partial \theta} g_s^i \int Y_s^m \bar{V} Y_i^m d\Omega$$

$$- \bar{F} g_s^i \int Y_s^m \text{grad} \bar{V} Y_i^m d\Omega$$

ε is the energy of an electron, h is Planck’s reduced constant, and the g_s^i are transformed coefficients of the expansion. The first line of the equation is given in the following source snippet, where the `sum<>(start,end,local_variable)` is derived from the Boost Phoenix 2 (Boost Phoenix 2, 2006) environment with local scope variables. The integrals have to be evaluated just once (pre_int<1>) and are then constants entered into the equation system. Their evaluation is made easier due to the orthogonality of the spherical harmonic basis functions.

After the equation system for the coefficients is assembled and solved, the solution to the initial problem is obtained by evaluating the expansion using the calculated coefficients. This also reveals the problems of this approach. An equation system has to be solved in order to obtain the coefficients. Furthermore the evaluation of the expansion may pose additional numerical challenges (Deuflhard, 1976).

4.2 Discretization Schemes

The lack of computational power required for the rigorous solution of Boltzmann’s equation resulted in the development of simplifications that can be used to calculate several important macroscopic quantities.

One of these simplifications is the drift-diffusion model, which can be derived from Equation 1 by applying the method of moments (Selberherr, 1984). By calculating appropriate statistical averages it is possible to obtain the electron concentration. It is however not possible to provide more sophisticated information such as the energy of the electrons. This approach has been used very successfully in semiconductor simulation for several decades now and is still very popular, although more rigorous alternatives have been developed.

Equation 4 shows the resulting equation to be solved self consistently with Poisson’s equation, given in Equation 5.

$$\text{div } J_n = 0, \quad J_n = q n \mu_n \text{grad } \Psi + q D_n \text{grad } n$$

$$\text{div } (\text{grad } \varepsilon \Psi) = -\rho$$

Equation 4 is discretized using the Scharfetter-Gummel (Scharfetter and Gummel, 1969) scheme resulting in a non-linear equation of the form

$$J_{n,ij} = \frac{q \mu_n U_{th}}{A_{ij}} (n_j B(\Lambda_{ij}) - n_i B(-\Lambda_{ij}))$$

$$\Lambda_{ij} = \frac{\Psi_j - \Psi_i}{U_{th}} B(x) = \frac{x}{e^x - 1}$$

The discretization of the differential operators using finite volumes yields:

$$\text{div } x \approx \sum_{i \in \Omega} \frac{A}{V} \quad \text{grad } x \approx \frac{1}{de_{\Omega}}$$
The benefits of this approach are the simplification of the model and a tremendous reduction of required computing resources. The drawbacks again include the necessity to solve an equation system and the reduced amount of information remaining in the calculated solution.

4.3 Stochastic Schemes

The Monte Carlo (MC) approach is the most important stochastic scheme used to simulate physical and mathematical systems which can not be solved in more traditional ways due to their complexity. This is often the case when simulating fluids or gases, or when the inputs to the simulation are subject to considerable uncertainty and fluctuation.

The MC approach is based on the use of sequences of random or pseudo random numbers. To get statistically relevant results thousand if not millions of variates need to be calculated, which makes MC simulations computationally very expensive.

Nevertheless, the complexity of the model is broken down, as the governing equations are evaluated only locally for each particle and the particle is traced as it moves through the simulation domain. MC simulation does not involve the solution of any large system of equations to yield a result. As a consequence ill posed problems are less of a problem and the affordable simulation time becomes the main limiting factor for this method.

4.3.1 Application Design

We have extracted the most important parts of a MC application and developed several generic modules:

- Generic random number library interface
- Geometric operations
- Traversal mechanisms

One of the most important parts of the MC simulation is the handling of the random number generator. We therefore use a generic random number library interface to keep the implementation details and number distribution orthogonal to the main application. The current implementation uses the Boost random number library (Boost, 2007) with overall high performance.

All geometrical operations, such as intersection tests, angle calculation, and trajectory calculation are used in several separate modules. Due to the concept interface these modules can be implemented, e.g., with CGAL algorithms (Fabri, 2001) as well. The CGAL offers additional mechanism of several numerical kernels (Pion and Fabri, 2006) with different types of accuracy and runtime requirement. An example of the main control module for a dimensionally independent application is presented in the next code snippet:

```c++
template<typename RNG>
void particle_sim(gsse::domain_t domain, std::vector<particle_t>& particles, long iterations, RNG& random_gen) {
    for(long j = 0; j < iterations; j++) {
        for(unsigned int i = 0; i < particles.size(); i++) {
            // control condition
            if(particles[i].E != 0) {
                MC_step(domain, particles[i], random_gen());
            }
        }
    }
}
```

Control Unit for a Monte Carlo Application

A typical example of an implementation of a MC application is given next. Different properties can be written on all cells and the corresponding sub-cells, such as the reflecting property to an edge.

```c++
void MC_step(gsse::domain_t domain, particle_t& par, double random) {
    std::vector<facet_type> border_facets;
    bool status;
    new_position = par.position + par.delta_t * par.v_vec;
    status = particle_in_domain(domain, new_position);
    // evaluate status .. code omitted
    do {
        border_facet_intersection(domain, par, new_position, random);
    }
```
Step Control for a Monte Carlo Application

By providing an ability to specify the reflection properties it is possible to realize the exact as well as diffuse reflections. Figure 3 shows how a single particle may take different paths, while each reflection is selected randomly, parametrized according to values on the boundary edges to achieve the effects of diffuse reflection.

![Figure 3: Comparison of trajectories of a particle with randomized and non-randomized reflection.](image)

The dimensionally independent implementation of a geometric test for an intersection with a boundary is just as simple:

```cpp
bool part_in_domain(domain_t domain,
                     point_type point) {
    bool status = false; // particle
    for (boundary_cell_iterator bcit = domain.bcell_begin();
         bcit != domain.bcell_end(); ++cit) {
        // geometrical intersection tests for
        // a given point with boundary cells
        return status;
    }
    return status;
}
```

Test for Boundary Intersection

The following code example presents a generic intersection test of a point and a line. With the topological interface of the GSSE the CGAL data structures can be used for all parts of the simulation, in this example a CGAL::Segment_2.

```cpp
CGAL::Segment_2<Kernel> domain_t;
CGAL::Line_2<Kernel> line_t;

void geom_intersection(domain_t domain,
                       line_t line, point_type ipoint) {
    CGAL::Object result;
    CGAL::Segment_2<Kernel> iseg;
    result = CGAL::intersection(seg, line);
    // evaluate the result..
}
```

Test if a Point Intersects a Line

5 CONCLUSION

We have presented three different methodologies of obtaining a solution to mathematical equations which model physical problems. While the availability of flexible high performance environments greatly eases application development, each of the different approaches has its benefits and its drawbacks to be considered carefully before choosing the implementation of a solution strategy. Our multi-methodology environment GSSE eases comparison and development greatly by providing all not only all the required traversal mechanism, thereby eliminating error prone index operations, but also a functional calculus, that allows for a mathematically attractive formulation.

REFERENCES

275

