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ABSTRACT

The application of the box integration method in
Technology CAD environments is investigated. A par-
ticular difficulty arises from physical models like the
impact ionization rate or the high-field mobility within
the drift-diffusion carrier transport equations which rely
on vector quantities. We discuss different methods how
generation rates can be approximated in the box scheme
and how the requirements for the applied vector dis-
cretizations are. Simulation results of devices operated
near break-down are presented using implementations of
the presented schemes. Advantages and disadvantages
in respect to implementation, to errors, and to conver-
gence behavior are presented.

Keywords: vector discretization, box method, tcad,
snap-back

1 INTRODUCTION

Simulation environments for semiconductor devices,
usually known as Technology CAD (TCAD) tools, model
the device physics using basic semiconductor equations,
consisting of partial differential equation (PDE) sys-
tems. Because of the complexity of the PDEs in non
trivial semiconductor devices, analytical solutions are
usually not available and numerical methods have to be
applied. Consequently, discretization in time and space
is necessary, where the latter is discussed in this paper.

The spatial discretization is represented by a mesh
laid over the simulation domain, consisting of nodes,
edges, and elements. In two dimensions (2D), the ele-
ments might be rectangular in orthogonal grids, or trian-
gular in different types of structured and unstructured
meshes. The extension to three dimensions (3D) leads
to cuboids and tetrahedrons, respectively.

The discretization step transforms the non-linear
PDE system that describes the carrier transport in semi-
conductor devices into a non-linear difference equation
system. A solution of this equation system can be found
for instance by using Newton’s method.

In this work the drift-diffusion transport equations
are used. The continuity equation reads

av

V-Jy+syqat

= —s,R, (1)

where v € {n,p} is the electron (n) and the hole (p)
concentration, respectively, J, is the current density for
the carrier type v, s, = —1, s, = +1, q is the elementary
charge and R is the recombination rate. The current
relation is solved together with Poisson’s equation

V-(€E)=p=q(lp—n+0C), (2)

where E is the electric field, € is the permeability ten-
sor, p the charge and C' the net concentration of fixed
charged particles, including donors and acceptors. The
drift diffusion relation for the current density reads

J, = quu,E —s,qD, Vv, (3)

where 1, is the mobility and D, the diffusivity for each
carrier type. Using (3) and the relation E = —V),
where v is the electrostatic potential, the vector quan-
tities J, and E can be eliminated and the remaining
unknowns are n, p and . This avoids vector quanti-
ties as unknowns in the equation system under inves-
tigation. Vector quantities are usually calculated in a
post-processing step after each Newton iteration. How-
ever, those non-scalar values are needed in many phys-
ical models, like high-field carrier mobility or impact
ionization rate models, which might have influence on
the simulations results as well as on the convergence
behavior of the iterative solution process.

There is no unique definition for the computation of
vector quantities in a discretized system. 1D discretiza-
tions along edges can be interpreted as projections of
the unknown field vector. A linear discretization like it
is used for the electric field gives in a triangular element
a unique solution for the field vector. Other quantities
like the current density require non-linear discretizations
which cannot be assembled straight-forwardly so that
there is no distinct solution available. Different propos-
als are discussed in this paper in the context of calcu-
lating the impact ionization carrier generation rate.

2 DISCRETIZATION

The main discretization scheme used in this work is
the box integration method [1] which is summarized in
the next subsections.
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Figure 1: The Voronoi box 7 with its associated triangular elements. Area of constant generation term is shown for
the box based methods (a), the element based methods (b), and the method proposed by Laux [4] (c).

2.1 Box Method

The basic discretization step concerns the divergence
operation V - F = G, with a flux density F and a gen-
eration term G (= —R). Since (1) and (2) are of this
form, integration over a volume V; and application of
the Gauss theorem gives

7{ F-dA = [ Gav, (4)
oV; Vi

where A is the outwardly oriented surface of the box
volume.

Discretization of (4) allows one to write the left hand
side as a sum of all fluxes leaving the box through the
area JV; which can be split into flat box boundary areas
A;j. A 2D representation of a box with its neighbors is
depicted in Fig. la, where Fj; is the projection of the
flux density onto the edge from box i to box j. This leads
to the box integration method as it is used throughout
this work:

Y FAy = /de, (5)
Vi

JEN;

where N; is the set of all neighboring boxes. There are
basically two sets of information necessary to describe
the geometry for the box integration method: First, a
list of all boxes together with the coordinates of the cen-
tral nodes and the volume of the boxes, and second, a
list of the connections between the boxes, the connecting
edges, together with their edge lengths (d;;) and surface
areas (A;;). This information is called the unstructured
neighborhood information. It has to be noted that no
more information about the elements is necessary, which
leads to an independence of the element shape. Addi-
tionally, this type of information is independent of the
problem dimension, which allows one to use the same
program code for 1D, 2D, and 3D device geometries.

The surface area A;; between two boxes ¢ and j is
delimited by the circumcircle centers and is needed to
calculate the flux between two boxes. The center points
have to be positioned inside the elements, otherwise the
flux area would be negative. Therefore the mesh has to
fulfill the Delaunay criterion.

2.2 Generation Integral

Physical models used in the drift-diffusion frame-
work are often based on vector quantities. This is be-
cause the microscopic scattering rates which actually
depend on the distribution function have to be approx-
imated using the electric field, the current density, and
the driving force. This is particularly true for the im-
pact ionization generation rate, which can be calculated
like in [2]: GM(E,J) = a,|Jnl/q + ap|Jp|/q, where
a, = a exp(—(ES/|F,|)?). The calculation of the
generation rate is therefore tightly bound to the dis-
cretization of vector quantities.

Different approaches have been published for the cal-
culation of the generation integral on the right hand
side of (5), three methods are discussed in this work.
All of them assume the generation rate to be constant
on a certain part of the box volume, which always re-
quires an accompanying method for estimating vectors
on the same volume. One approach to this problem is
to assume the generation rate to be constant within one
element. In this case, the generation integral for one
box volume is assembled using contributions from each
element attached to the box (see Fig. 1b):

/ GAV & ) GicVie, (6)
Vi

ecE;

where E; is the set of all elements that contribute to the
volume V;. The rate calculated in one element is the
same for all boxes the element is part of. This requires
constant vector quantities in the whole element (see i.e.
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[3]). Some implementations associate different current
densities for each edge pair and do not assume it to be
constant within the whole element. In this case there are
independent rates for each box the element is contained
in, but (6) can still be used.

Another approach for the calculation of the impact
ionization rate on triangular meshes has been proposed
by Laux [4], where each element is split into three tri-
angular regions, so called avalanche regions. The calcu-
lation delivers three different generation rates, each as-
sociated to one edge (see Fig. 1c). Therefore, the sum-
mation for the generation integral in the box volume
requires one to consider two contributions from each el-
ement to one box:

/ GAV & Y (GiejViej + GickViek) - (7)

v ecE;

The last approach discussed in this work assumes a
constant generation rate in the whole box volume, which
reduces the generation integral to a simple scalar prod-
uct:

/de ~ G,V (8)
Vi

Beside the simple assembly of the integral per box, this
method has certain other advantages. The assumption
of all scalar and vector quantities being constant within
the box allows one to calculate only one rate for the
whole box, which means that there is no additional ge-
ometry information for the assembly necessary. This
results in a dimension and element shape independent
implementation, which perfectly agrees with the box in-
tegration scheme in (5).

3 VECTOR DISCRETIZATION

As already stated above, there is no unique defi-
nition for the calculation of vector quantities in dis-
cretized systems. The main issue with vector quantities
is that there are commonly only edge wise projected 1D
discretizations available which have to be reassembled.
The electric field for example is discretized with a finite
difference approximation using the potentials on both
ends of an edge and the current density is usually dis-
cretized using the non-linear Scharfetter-Gummel dis-
cretization [5].

In the previous section different volume parts that
are used for the calculation of constant generation rates
were discussed, each requiring a scheme for a constant
vector approximation. We focus on the needs of the
box based scheme (8) which requires a vector that is
constant within the whole box volume. Two approaches
that can be used for this task were summarized in [6].
The first one, scheme A, reads as

1
JEN;
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Figure 2: Convergence progress in a device with a 2D
nt pnnT structure operated near first break-down. The
schemes show only marginal influence on the conver-
gence behavior. The inset shows the initial and solution
operating points for the two current level steps.

while the second one, scheme B, as

A
Fi=M;' ) d;j di; Fij, (10)
JEN; Y
using
Ais
Mi = Z di_'_jeij ®eij. (11)
jeN; Y

d;; is the vector pointing form mesh point i to j, d;; =
|d;;| and e;; = d;;/d;;. M is called the geometry ma-
trix and has to be calculated once for a non adaptive
mesh. Both vector discretization schemes only require
the unstructured neighborhood information, therefore
the same geometrical information as for the box inte-
gration (5) is needed.

4 RESULTS

The two vector discretization schemes described in
(9) and (10) and the scheme proposed by Laux [4] where
implemented and used to calculate the impact ionization
rate. The generation integral was assembled using (7)
and (8), respectively. The implementation of the scheme
by Laux is only limited to 2D domains using triangular
meshes, whereas the two other schemes are dimension
and mesh independent and the same program code can
be used for 2D and 3D simulations.

Simulation results from two devices are presented: A
diode which was selected to investigate effects in a sim-
ple device with only one relevant dimension and a para-
sitic nT pnn™ structure of a smart power device with a
significant influence of the second dimension where cho-
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Figure 3: Comparison of the simulation results for a
reverse biased diode near break-down using an equidis-
tant mesh. A high mesh density leads to high accuracy
for all schemes. Increasing the mesh spacing shows that
the scheme by Laux gives better results because of the
lower quantization error.

sen. The diode is investigated in reverse biased operat-
ing condition, the parasitic bipolar smart power struc-
ture is simulated in snap-back, a state the device can be
driven in during voltage peaks on the power line.

The influence of the vector discretization scheme on
the convergence behavior was compared. Only very lit-
tle differences were noted and no trend favoring one or
another scheme was observed. The convergence process
for a numerically critical current level step at the trig-
gering phase of the snap-back in the smart power device
is depicted in Fig. 2. It can be clearly seen, that the
choice of discretization method has only very little in-
fluence, despite of the critical simulation step.

However, the mesh dependence of the results was
observed to be higher for the box based discretizations.
Using a high mesh density leads to comparable results
for all three discretization methods, but using an in-
creased mesh spacing, the results using Laux’ scheme
change very little, whereas the two box based schemes
show large deviations. In Fig. 3 an example using the
diode clearly shows that an increased mesh spacing leads
to a shift of the break-down voltage using the box based
schemes, whereas only a very small shift is observed us-
ing the scheme by Laux.

Also shown are results for the snap-back simulation
in the smart power device which show deviations be-
tween the three schemes (Fig. 4). The two box based
schemes again show a voltage shift in comparison to the
scheme by Laux, which fits well to the solution from a
high mesh density (not shown in the figure). The reason
for the stronger mesh dependence can be found in the
implicitly finer mesh used in Laux’ scheme.
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Figure 4: Comparison of simulation results of an
nt pnnT structure operated near first break-down. The
scheme from Laux gives the most accurate result com-
pared to simulations using a higher mesh density (not
shown).

5 CONCLUSIONS

Discretization schemes for vector quantities together
with the calculation of generation rates within the box
integration method have been presented. Here, the as-
sumption of a constant generation rate using constant
vector quantities inside a box volume is of special in-
terest. Implementations of two schemes using this as-
sumption were compared to a scheme by Laux which
uses an approach with smaller volumes of constant gen-
eration rate. Despite the lower accuracy obtained, two
advantages are introduced by the proposed box oriented
schemes. These are the independence on the problem di-
mension and on the mesh type used, as long as the mesh
fulfills the Delaunay criterion. These independencies are
possible because only the unstructured neighborhood in-
formation is required.
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