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Abstract—For process and device simulation, very high mesh
densities are often required to obtain accurate simulation re-
sults. Unfortunately, the required mesh densities depend often
on a direction. Conventional mesh-refinement strategies generate
isotropic meshes with a high amount of mesh points, reaching
the memory and time limits in particular for three-dimensional
simulations. For a better resolution of the carrier concentrations,
for instance, a boundary-conforming mesh-generation method
with tunable mesh spacings in almost orthogonal directions was
developed. Similar to elliptic mesh generation, the mesh points
are placed inside the simulation regions based on the solution
of partial differential equations. The method used can produce
highly anisotropic mesh densities in the regions of particular
interest. In contrast to elliptic grid generation, which produces
structured grids, the method used generates triangular or tetrahe-
dral (unstructured) Delaunay meshes in two or three dimensions,
respectively, which are very well suitable for the process and device
simulators.

Index Terms—Anisotropy, mesh generation, microelectronics,
optimization techniques, semiconductors, simulation.

I. INTRODUCTION

FOR THE development of modern semiconductor devices,
the use of accurate process and device simulators has

been proven to be highly beneficial. Usually, the mathematical
description of the problem cannot be solved analytically, and
numerical approximations have to be employed [1], [2].

The simulation domain is tessellated and based on this mesh
an approximation of the solution is found using the methods of
Finite Elements or Finite Boxes; see for instance [3] and [4]. To
achieve accurate numerical results, the simulation meshes have
to be very dense in certain regions and coarse in others, which
often demands anisotropy.

As a particularly important example, consider an MOS tran-
sistor where the carriers and the current in the channel under
the gate oxide vary slightly along the channel, but perpendic-

Manuscript received May 2, 2005. This paper was recommended by Asso-
ciate Editor S. Saxena.

J. Cervenka and T. Grasser are with the Christian Doppler Laboratory
for Technology Computer Aided Design (TCAD), Institute for Microelec-
tronics, Vienna University of Technology, 1040 Vienna, Austria (e-mail:
cervenka@iue.tuwien.ac.at; grasser@iue.tuwien.ac.at).

W. Wessner, E. Al-Ani, and S. Selberherr are with the Institute for
Microelectronics, Vienna University of Technology, 1040 Vienna, Austria
(e-mail: wessner@iue.tuwien.ac.at; alani@iue.tuwien.ac.at; selberherr@iue.
tuwien.ac.at).

Digital Object Identifier 10.1109/TCAD.2006.876514

ularly to the semiconductor surface the quantities change over
several orders of magnitude. To resolve the carrier concentra-
tions properly, a dense mesh is required perpendicular to the
surface, whereas along the surface, a coarser mesh is suffi-
cient. Applying conventional mesh-refinement strategies, the
resulting mesh often shows a too large number of mesh points
along the channel or a too crude discretization of the carriers
perpendicular to the channel.

Therefore, a new strategy of point placement inside the simu-
lation domain was developed. In addition to this anisotropy, the
method of Finite Boxes employed by most device simulators
requires Delaunay meshes [5]. Therefore, the shape of the mesh
elements cannot be chosen arbitrarily, because the Delaunay
criterion must always be satisfied [6], [7]. Thus, highly sophisti-
cated anisotropic mesh-refinement strategies, as introduced for
instance in [8] and [9], can usually not be used, because these
techniques do not account for the Delaunay criterion.

The basic idea of our new method is inspired by the well-
known ortho-product grids. The grid densities of the ortho-
product grids can be tuned arbitrarily in every direction of the
rectangles or cuboids. However, this method cannot properly
resolve nonplanar and nonaxial boundaries. The number of grid
points increases rapidly when certain boundary regions have to
be refined. Classical triangular meshes, on the other hand, are
not limited by nonplanarities of the boundaries, but the mesh
elements show a nearly isotropical mesh density and the result
is not satisfying either. In our newly developed method, the
benefits of both mesh types are combined.

II. BASIC IDEA

To demonstrate the basic algorithm, a two-dimensional do-
main is considered first. The extension to three dimensions is
discussed in Section VII. In our partial differential equation
(PDE) method, the simulation area is treated like a capacitor.
Two electrodes are placed at the boundary (see Fig. 1) where a
contact voltage is applied. For the remaining parts of the bound-
ary, homogenous Neumann boundaries are used. Based on the
electric field inside the capacitor, the mesh points and edges for
the actual simulation mesh are placed along selected contour
and field lines. As the contour and field lines stay orthogonal,
the grid elements build quadrangles with nearly orthogonal
edges, similar to the ortho grids. As a consequence of the
electrode-conforming contour lines and Neumann boundary-
conforming field lines, we obtain boundary-conforming grid
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Fig. 1. Nearly rectangular grid elements achieved by selection of contour lines
inside capacitor.

elements. By selection of different contour and field lines, the
grid spacing along and across the electrode boundaries can be
controlled, and the aspect ratios of the resulting quadrangles
can be tuned as desired. However, commonly used device
simulators are not designed to perform calculations on these
quadrangles. Therefore, the set of grid points must be meshed
by a Delaunay triangulator to obtain a conventional mesh.
Because of the nearly rectangular shape of the elements, no
additional mesh points have to be inserted to maintain the
Delaunay criterion, and the preferred mesh densities and main
directions are not disturbed. Moreover, the denser the grid
spacing is chosen, the more rectangular the grid elements
become.

III. CALCULATION OF CONTOUR AND FIELD LINES

For the calculation of the contour lines, the Laplace equation
with Dirichlet conditions (electrodes) and homogenous Neu-
mann conditions is solved. The domain is initially meshed,
and the solution is found numerically by the method of Finite
Boxes. Due to the smoothness of the Laplace equation as an
elliptic PDE, the requirements on this initial mesh and the
equation solver are not very high compared to the complexity
of solving the actual semiconductor equations. Additionally,
only a linear PDE has to be solved. However, too coarse
meshes result in a difference of the computed and actual field
distributions, and, therefore, in a possible nonorthogonality of
the computed contour and field lines, which results also in a
lack of orthogonality of the mesh lines. Particularly, this lack of
orthogonality can be observed near boundary corners, and mesh
refinement at these regions, which preserves the orthogonality
of the contour and field lines, is required.

For numerical reasons, the field lines themselves are not
calculated directly by walking along the directions of the
electric field. Instead, a more elegant approach via a two-
dimensional duality is employed, which can be applied for
the given set of boundary conditions (refer to Appendix). By
replacing the electrodes of the capacitor with the homogenous
Neumann conditions and the initial Neumann boundaries with
the electrodes (Dirichlet conditions), a dual system is defined.
The contour lines (field lines) of this dual system describe the
field lines (contour lines) of the former, and vice versa.

In summary, the set of differential equations for the dual
scalar fields u and v in two dimensions are

uxx + uyy =0 (1)

vxx + vyy =0 (2)

which describe the contour lines shown in Fig. 1, with
u = const and v = const. By introduction of the boundary
conditions

∂Bu0 → u = 0, ∂nv = 0

∂Bu1 → u = 1, ∂nv = 0

∂Bv0 → v = 0, ∂nu = 0

∂Bv1 → v = 1, ∂nu = 0 (3)

a normalization of the form

u ∈ [0, 1] and v ∈ [0, 1] (4)

is achieved due to the maximum principle [7], [10].

IV. DIFFERENCES TO ELLIPTIC GRID GENERATION

Examination of the above equations reveals a similarity to
elliptic mesh generation [11], [12]. As illustrated in Fig. 2,
(1)–(3) are a transformation of the physical domain (x, y) to a
computational domain (u, v), with a one-to-one mapping of the
physical points to the computational points in the range (u, v) ∈
[0, 1] × [0, 1]. In the formulation of elliptic grid generation, the
differential equations are first transformed to the computational
domain, delivering the nonlinear-equation system

α(xv, yv) xuu

− 2 β(xu, xv, yu, yv) xuv + γ(xu, yu) xvv = 0 (5)

α(xv, yv) yuu

− 2 β(xu, xv, yu, yv) yuv + γ(xu, yu) yvv = 0. (6)

The solutions x(u, v) and y(u, v) of this equation system
directly deliver the physical point coordinates x and y [13]. For
mesh-generation purposes, a rectangular grid [0, u1, . . . , um] ×
[0, v1, . . . , vn] is spanned over the computational domain.
Based on this grid, the transformed differential equation (5) and
(6) have to be solved, usually iteratively by the method of finite
differences. The solution directly delivers the physical grid
points (xi, yj). The physical grid can be interpreted as a warped
ortho grid with the grid points (xi, yj) according to the compu-
tational points (ui, vj) with i = 0, 1, . . . m and j = 0, 1, . . . n.

In contrast, the PDE mesh-generation algorithm proceeds
differently. The differential equation (1)–(3) are solved directly
on the physical domain, and the mesh points (x, y)k are found
by point location inside the distributions (u, v)

(u, v)k Pointlocation−−−−−−−−−→(x, y)k. (7)

In other words, the corresponding triangle t is searched in the
(u, v) regime, which involves the value pair (u, v)k. The linear
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Fig. 2. Transformation of physical domain (x, y) to computational domain (u, v).

interpolation of u, v, x, and y inside the triangle t delivers
the final coordinate values (x, y)k. This technique shows two
advantages compared to the elliptic method. On one hand, only
a linear differential equation system has to be solved to obtain
the distributions u and v. On the other hand, any desired compu-
tational point (u, v)k inside the boundaries delivers a physical
mesh point (x, y)k. The elliptic formulation requires an ortho
grid in the computational domain; whereas, the PDE method is
not limited to such a grid. Once the distributions u and v have
been calculated, a point insertion of any desired point set is pos-
sible. The impact of this advantage will be shown in Section V.

An example of an MOS structure is shown in Fig. 3. The
silicon segment of this transistor will be meshed by the PDE
method. The initial mesh of this segment with the distribution u
is drawn in this figure based on the Dirichlet boundary setting,
which is schematically drawn. A relatively crude mesh can be
used. Only at the boundary corners, a refinement that maintains
the orthogonality of the two dual scalar fields is implemented.
In detail, the included angle between the gradients of the two
dual distributions is calculated for each triangle. The devia-
tion of this angle to the right angle is a measure for the
directional error of the dual contour lines, and the triangles
are refined, if necessary. Due to its robustness, in our two-
dimensional applications, the triangular Delaunay mesh gen-
erator TRIANGLE [14] is applied to produce the initial and the
entire simulation meshes.

Derived from this calculation, a final triangulated simulation
mesh with 19 × 12 contour ticks in the (u, v) space is
produced, which is shown in Fig. 4. Frequently, the mesh in
the other segments of the device is of minor interest and can,
therefore, be meshed without placing the restrictive demands
on the mesh density or orthogonality. However, because of the
rectangular structure of the contacts, the PDE method is used
as well and works without requiring point insertions inside the
contact regions.

V. FEATURE EDGES, ADDITIONAL REFINEMENT,
AND TERMINATING LINES

For device simulation, it is necessary to preserve the connec-
tivity between the different segments. At the boundaries, the

Fig. 3. Two-dimensional MOS transistor. Silicon segment is meshed by PDE
method. On this segment, initial mesh and potential distribution are shown,
based on Dirichlet boundaries shown on bottom.

meshes of the different segments have to be point conforming,
and feature edges and points, especially those points where
more than two materials touch–the so-called triple points, must
be preserved. In the basic formulation of elliptic mesh gen-
eration, a rectangular grid is spanned over the computational
domain. Therefore, this technique might possibly lose structural
edges and points, if they are not located on the computational
coordinates ui or vj . Often, a parameterization of the geometry
in dependence of the arc length is chosen. In this case, the
different structural corners can be assigned to the computa-
tional contour ticks ui or vj . Unfortunately, it is impossible
to preserve the orthogonality of the grid lines at the boundary
simultaneously, as the normal derivation at the boundaries
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Fig. 4. Resulting mesh produced by PDE method.

Fig. 5. Inclusion of corner points in mesh-generation process. Orthogonality
of triangles at boundary is disturbed, caused by feature points marked with �.
Feature points cause curtain-like mesh with badly shaped triangles to maintain
Delaunay properties.

cannot be chosen independently any longer. When using the
above boundary conditions, not even an assertion of the re-
quired grid spacing or location of the boundary points in the
(u, v) regime can be chosen. However, for device simulation,
these structural corners must be preserved. This behavior can
be easily handled by the PDE mesh-generation method with the
additional inclusion of these geometry points and edges in the
final triangulation process, which is shown in Fig. 5.

However, as demonstrated in Fig. 5, badly shaped mesh ele-
ments near these feature points are created. The orthogonality
and main directions of the mesh lines will be destroyed. An
improvement is obtained if these necessary boundary points
are delivered to the PDE mesh generation as additional contour
ticks ui or vj , which is shown in Fig. 6.

Of course, this improvement by the additional contour ticks
has the disadvantage that the mesh lines induced by such an
additional tick will propagate through the whole simulation
domain. As a consequence, additional mesh points are created
at the intersections to its orthogonal contour ticks. This flaw can
only be resolved by allowing termination of the contour lines,
realized by a terminating-lines algorithm, shown in Fig. 7. The

Fig. 6. Repaired mesh. Marked feature points are inserted as contour ticks
too, which propagate through whole region. As a consequence, a lot of mesh
points are generated at intersections with orthogonal contour lines.

Fig. 7. Additional contour lines are terminated inside region at areas where
mesh can be allowed to be coarser, and distortion of orthogonality does not
seriously harm calculation. Termination points are marked with ×.

continuation of the contour lines is stopped at locations where
a coarser mesh can be allowed and the disturbed orthogonality
does not influence the simulation.

Even a desired mesh spacing along or normal to the bound-
aries or in areas of special interest can be achieved in the same
way. Mesh refinement and coarsement at some areas can be
handled by the additional contour ticks in combination with the
termination of the mesh lines in the regions of minor interest.

VI. TERMINATING LINES ALGORITHM

The terminating-lines algorithm plays an important role in
the quality of the mesh. Based on the origin of the contour
tick, different mesh lines have different priorities regarding
termination. The top priority is given to the contour lines,
which are caused by the feature points. These contour ticks
are not necessarily required with regard to the mesh densities.
If no deletion of the contour line occurs and the contour line
propagates to the opposite boundary, a feature point is produced
there as well. Thus, a possible “infection” with the contour
ticks; therefore, mesh points to the neighboring segments are
induced. In other words, a contour tick caused by a feature point
is absolutely undesired at the opposite boundary. For the other
mesh lines, the priorities for termination can be related to the
amount of saved points, for instance.
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Fig. 8. Termination of mesh line vj . Point (ui, vj) can be safely removed.

For an allowed termination of the mesh lines, the following
conditions have to be satisfied.

1) An optional criterion decides if a coarser grid is desired.
This criterion can be realized as a doping or a surface-
distance dependent criterion, for instance. For the feature-
point-induced contour lines, this criterion may always
be satisfied.

2) Optionally a criterion decides if the disturbed orthogo-
nality is acceptable. Here, also surface-distance criterions
can be applied.

3) Finally, it must be checked if the Delaunay criterion
allows a deletion of the mesh line. Of course, the entire
Delaunay mesh generator would produce a valid Delau-
nay mesh. However, the deletion can only be allowed if
the distortion of the mesh stays local.

In detail, the following consideration, depicted in Fig. 8,
delivers a criterion for a possible termination. Following a
contour line vj , it should terminate as soon as possible, which
implies that criteria 1) and 2) are fulfilled already. A nearly
rectangular shape of the mesh cells, almost satisfied by the dual
contour lines, is also supposed. Crucial is only the first deletion
point, here (ui, vj). The edge ei must be a valid mesh line;
otherwise, the curtain-like mesh, already shown in Fig. 5, is
generated by the Delaunay mesher. If this point is removed, the
following ui+1, . . . can be deleted safely. The edge ei itself is
only valid if the sum of its opposing angles α and β is less
than 180◦ (a consequence of the Delaunay postulation [15]).
Because of the rectangular shape, β < 90◦ is always satisfied.
Therefore, if α < 90◦ is satisfied too, the edge is valid, and the
point can be removed. As can be seen in the figure, the deletion
of (ui−1, vj) with α′ > 90◦ may cause an angle sum of more
than 180◦, which results in the curtain-like mesh.

Fig. 9(a) shows the result of the PDE mesh generation
of the previously introduced MOS transistor. Under the gate
contact, a very dense mesh is produced. Potential high-carrier-
concentration variations can be accurately resolved; whereas,
the termination of the mesh lines nearly guarantees not to affect
the coarse mesh elements at the bottom of the device, where
only a bulk current has to be handled. In the detailed view
[Fig. 9(b)], it can be seen that the anisotropic mesh densities
are maintained as expected. Aspect ratios of the mesh elements
of 5–20 can be handled easily.

VII. EXTENSION TO THREE DIMENSIONS

In a straightforward manner, the two-dimensional strategy is
extended to three dimensions. Here, a set of three differential
equations is used for the PDE point placement as

uxx + uyy + uzz =0 (8)

vxx + vyy + vzz =0 (9)

wxx + wyy + wzz =0. (10)

On the simulation domain B, the according boundary condi-
tions read

∂Bu0 → u = 0, ∂nv = 0, ∂nw = 0

∂Bu1 → u = 1, ∂nv = 0, ∂nw = 0

∂Bv0 → v = 0, ∂nu = 0, ∂nw = 0

∂Bv1 → v = 1, ∂nu = 0, ∂nw = 0

∂Bw0 → w = 0, ∂nu = 0, ∂nv = 0

∂Bw1 → w = 1, ∂nu = 0, ∂nv = 0. (11)

In analogy to the already shown two-dimensional dual distri-
butions in Fig. 1, the three types of contour surfaces for the
three dimensions are shown in Fig. 10. Usually, the orthog-
onality of the contour surfaces cannot be guaranteed for the
three dimensions. Orthogonality can only be achieved if the
curvilinear coordinates u, v, and w follow the lines of curvature,
which are the lines of maximal and minimal curvature. A de-
tailed discussion concerning the three-dimensional orthogonal
meshes is given in [11], for instance. However, resulting from
the chosen boundary conditions, at least at the boundaries, the
orthogonality is achieved. For instance, on boundary ∂Bu0,
which forms a contour surface of u = 0, it is guaranteed
that this surface is perpendicular to the contour surfaces of
v = const and w = const. The orthogonality of the surfaces
v = const versus w = const, however, cannot be guaranteed
at this boundary. Analogous considerations are valid at the
other five boundaries with the corresponding contour surfaces.
Consequently, the constructed mesh cells show clipping faces,
which are conforming or perpendicular to the boundaries, ap-
proximately quadrilateral prismatic bodies. Inside the domain,
orthogonality is not observed, but usually the cuboidal shape
of the mesh elements is nearly fulfilled and the tetrahedral
Delaunay mesh generator works fine. For the generation of the
initial mesh and the simulation grid, our in-house tetrahedral
Delaunay mesh generator DELINK [15] is invoked.

VIII. TWO-DIMENSIONAL EXAMPLES

A. Comparison of an Isotropic Method With
PDE Method in Two Dimensions

Based on an MOS transistor structure, the PDE method is
compared to a common mesh-refinement technique concerning
the rank of the system matrix and execution time of the electric
simulation. As a criterion for the mesh quality, the variations of
the simulated output characteristics are examined.
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Fig. 9. Denser mesh, with terminating lines to prevent high mesh density in areas of low interest. (a) Whole device structure. (b) Detail of structure. High aspect
ratios of mesh elements near surface can be seen.

Fig. 10. Three-dimensional contour surfaces.

In the given structure, the field oxide has a thickness of about
1 nm. Therefore, under the polysilicon, a transversal mesh
spacing of a fraction of a nanometer is required. In analogy
to the PDE method, the conventional mesh-refinement method
tunes the transversal mesh spacing by a maximum element area
limit, which must not be reached by the triangles, starting with a
small value at the silicon-oxide boundary, which grows towards
the bulk contact. The mesh spacing ρ and maximum area limit
Amax follow

Amax(y) = ρ2

√
3

4
with ρ(y) = ky + d0 (12)

with an initial spacing d0 and a growth factor of 20% (k = 0.2).
For the generation of the unstructured mesh, the triangular
Delaunay mesh generator TRIANGLE [16] has been used again.
A comparison of several calculations with different mesh den-
sities has shown that the final output characteristic is reached
if the initial mesh distance d0 is set to 0.1 nm. Continuous
reduction of the mesh densities shows a variation in the output

characteristic of less than 0.5%. Accordingly, a detail of the
final unstructured simulation mesh is depicted in Fig. 11(a).
As expected, the triangles show a transversal spacing of nearly
0.1 nm, resulting in nearly equilateral triangles, and, therefore,
also a lateral spacing of about this size.

In comparison, a detail of the PDE mesh is shown in
Fig. 11(b). To achieve a simulation result with a variation of the
output characteristic with less than 0.5% to the previous mesh
method, the transversal mesh spacing must be set to 0.05 nm,
but in contrast, the lateral mesh spacing can be much coarser,
and a value of 0.5–1.0 nm has been used. The growth factor
of the transversal mesh line spacing is also set to 20% from
one to the next mesh line. The impact of these two techniques
can be seen in the execution time and the rank of the system
matrix required for simulating the output characteristics of the
device, depicted in Table I. The rank of the system matrix of
the isotropic method is about six times larger than that for
the PDE-based method, which roughly translates to memory
consumption. In contrast, a 12 times higher execution time is
required for the isotropic method.

B. Two-Dimensional Nonplanar MOS Transistor

This example demonstrates the applicability of the PDE-
based mesh-generation method to nonplanar surfaces. The de-
vice structure of a high-voltage MOS device together with
the simulation mesh is shown in Fig. 12(a). To highlight the
different material segments, only the mesh on the silicon do-
main is drawn. However, no special attention must be paid to
the meshes of the other segments. Care is taken of the edges
produced by the boundary points, which define the geometry
of the silicon surface. Starting at these points, mesh lines are
produced, which can be terminated close to the boundaries
[confer to the detail of the entire structure in Fig. 12(b)], and
the desired point density can be reconstituted shortly.
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Fig. 11. Detail of MOS structure. (a) Mesh refinement by maximum allowable triangle area. (b) PDE-based mesh generation.

TABLE I
COMPARISON OF SYSTEM MATRIX SIZE AND EXECUTION TIME REQUIRED

TO SIMULATE OUTPUT CHARACTERISTIC OF TRANSISTOR WITH 49
OPERATING POINTS ON AMD-64 3000+ FOR BOTH METHODS

IX. THREE-DIMENSIONAL EXAMPLES

A. FinFET

To overcome some of the red-brick walls that conventional
CMOS scaling faces today, for instance, FinFET structures have
been advocated [17]. A thin silicon fin connects the two large
contact pads, known as the source and the drain. The whole
structure is placed, shielded by a thick oxide layer, on top of
a wafer. An example structure is shown in Fig. 13. Over the
channel region, a polysilicon gate contact is deposited, which is
shielded from the fin by an oxide layer. Thus, the carrier flow
can be controlled in the domain under the polysilicon area by
the gate potential.

Because of the planar and simple segment geometries, the
mesh-generation procedure should, in principle, be straight
forward. However, due to the three-dimensional nature of the
problem, care has to be taken. Usually, the three-dimensional
simulations based on the unstructured meshes are problematic
due to the misaligned directions of the tetrahedrons in the fin.
The different carrier concentrations, which are achieved from
the grid points in the fin, result in instabilities of the equation
solver and the simulations often fail to converge.

Better results can be achieved by the ortho grids. Because of
the planarity of the boundaries and alignment to the coordinate
axes, the grid-generation process works well. Unfortunately, as
shown in Fig. 14(a), all the grid lines required in one segment
propagate through all other segments and result in a large
number of unnecessary grid points.

With tetrahedral meshes, where the fin is meshed by the
PDE-based method, excellent results have been obtained. The
finally used mesh, which produces the same device simulation
results as the ortho-product grids, is shown in Fig. 14(b). Along
the fin and the contact pads, the tetrahedrons are aligned in the

direction of the current flow. In addition, it can be clearly seen
that the high mesh density in the fin stays only local.

A comparison of the methods is given in Table II. The
output characteristics of the device, based on 7 × 7 operating
points, had been calculated using the above ortho grid and
two types of the PDE methods with different mesh densities.
For verification, if the PDE-based mesh is sufficiently dense,
a second calculation with a much denser mesh in the fin
region, compared to the first calculation, was performed, and
no significant differences in the output characteristics were
detected.

B. Electronically Erasable Programmable Read-Only Memory
(EEPROM) Memory Cell

A three-dimensional example of an EEPROM memory cell
is shown in Fig. 15. This structure shows a quarter of the entire
memory cell. Here, a full three-dimensional manufacturing
cycle was performed. Only the first oxidation step of the silicon
wafer was carried out in a two-dimensional approximation and
was expanded to three dimensions by extrusion. The following
deposition and etch processes of the floating gate, the insulator
layer between the two gates, and the control gate can only
be performed in three dimensions. The mesh for the device
simulation is prepared by applying the PDE-based method
for the silicon and field-oxide segment. For a detailed device
simulation, including the doping-dependent nonlinearities of
the silicon, the concentration profile of the dopants must be
carefully resolved in the active areas. Therefore, the silicon seg-
ment is meshed by the PDE-based method. A high point density
is required under the thin parts of the field oxide. Around this
region, the transversal resolution can be more crude, reaching
an overall coarse mesh at the bottom regions. Also in the
lateral direction, where the field oxide weakens the influence
of the gate voltage, the mesh density can be coarser. The
cumulative number of the mesh points and tetrahedrons is about
12 000 points and 52 000 tetrahedrons, respectively.

X. CONCLUSION

With our PDE-based mesh-generation method, a flex-
ible algorithm for highly accurate simulations of modern
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Fig. 12. Nonplanar MOS transistor. (a) Whole silicon segment. (b) Bird’s peak.

Fig. 13. Geometry of simulated FinFET structure.

semiconductor devices is available. For the two-dimensional
simulations, in combination with the use of a terminating-line
algorithm, the number of mesh points is drastically reduced
without the loss of accuracy. Therefore, calculation times are
highly reduced. Especially for the calculation of multiple oper-
ating points combined with frequent device optimization loops,
the savings in time is enormous.

For the three-dimensional simulations, good results have
been achieved by the PDE method as well. Naturally, the
complexity for the three-dimensional geometries and their data
representation is much higher than that for two dimensions.
Especially for the applicability of the PDE-based method, care
has to be taken concerning boundary smoothing for the pre-
vention of the input- and geometry-induced point generations
and, therefore, also distortion of the orthogonality close to
the boundaries.

APPENDIX

CONTOUR AND FIELD LINES

Equation (1) can be interpreted as the result of a two-
dimensional electric-field calculation [19] with

∇× E =0 (13)
∇E =0. (14)

Usually, a permittivity appears in (14). However, in the case of a
constant scalar permittivity, it can be skipped in the divergence
equation. With the ansatz of a scalar potential u

E = −∇u. (15)

Equation (13) is implicitly satisfied, and insertion into (14)
delivers the initial (1).

A second kind of solution of (13) and (14) is derived by an
electric vector potential A, defined as

E = ∇× A = ∇× (v ez) = (∇v) × ez (16)

which satisfies (14) implicitly. Because of the two dimension-
ality of the problem, this potential shows only a z-component.
Insertion into (13) delivers

0 = ∇× E = ∇× [(∇v) × ez] = −ez (∇∇v) (17)

and finally for the nonzero component only

∆v = 0 (18)

which is the same as (2).
The Dirichlet boundary conditions of u

∂Bu0 → u = 0 (19)

and

∂Bu1 → u = 1 (20)
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Fig. 14. Meshed FinFET structure. Oxide and nitride layers around fin have been removed for visualization purposes. (a) Ortho-product simulation grid. Grid
elements are split into tetrahedrons for visualization purposes only. (b) Tetrahedral simulation mesh. PDE method is applied to silicon segment as well as for
cuboidal segments.

TABLE II
COMPARISON OF DIFFERENT GRIDS. RANK DESCRIBES RANK OF SYSTEM

MATRIX OF EQUATION SYSTEM ASSEMBLED BY MINIMOS-NT [18],
WHICH WAS USED FOR ELECTRICAL SIMULATION

describe a vanishing tangential component of the electric field

0 = Et = t · E = t · [(∇v) × ez] (21)

=∇v · (ez × t) = −∇v · n (22)

⇒ ∂nv = 0 (23)

and result in the homogenous Neumann conditions for v. Alter-
natively, the homogenous Neumann conditions for u

∂Bv0,1 → ∂nu = 0 (24)

with a zero normal component of the electric field result in

0 =En = n · E = n · [(∇v) × ez] (25)

=∇v · (ez × n) = −∇v · t (26)

⇒ v = const (27)

which are the Dirichlet conditions for v. One of the Dirichlet
boundary values v0 = v = const can be chosen arbitrarily, and
the second value v1 has to be evaluated by integration from
one Dirichlet boundary to the opposite, for instance along the
boundary ∂Bu0

Λ=
∫

∂Bu0

En ds =
∫

∂Bu0

−∂nu ds

Λ=
∫

∂Bu0

En ds =
∫

∂Bu0

∇v · tds =
∫

∂Bu0

dv = v1 − v0. (28)

Fig. 15. Three-dimensional example of EEPROM memory cell.

Consequently, if the just described boundary conditions and
(28) are satisfied, the two scalar fields u and v describe the
same problem.

An interesting side effect of these scalar fields can be seen
when the field lines of E(u) are evaluated. The differential
equation for the field lines can be written as

0 = dy Ex − dx Ey
(16)

dy ∂yv + dx ∂xv = dv (29)

or consequently

v = const (30)
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which means that the contour lines of (2) describe the field lines
of (1). However, the shape of the field lines of E is invariant to
a constant scaling factor and an offset of v

ṽ =α v + β (31)

0 = dṽ = α dv. (32)

Therefore, the boundary values v0 and v1 can be set to two
different arbitrary values, and the normalization v0 = 0, v1 = 1
delivers the complete set of the boundary conditions, already
shown in (3).

This duality is a significant advantage of the method. As
the contour lines and the field lines stay orthogonal, the con-
tour lines of u = const and v = const are orthogonal, too;
therefore, the generated grid lines will stay nearly orthogonal.
As a consequence of the chosen boundary conditions (3), the
contour lines are also boundary conforming or orthogonal to
the boundaries. A rectangular grid can always be split into a
triangular Delaunay mesh; therefore, concerning the required
point insertion for achieving the Delaunay properties of the
mesh, the nearly satisfied orthogonality eases the generation of
the Delaunay mesh as well.
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