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Abstract We present the efficient simulation of lifetime

based tunneling in CMOS devices through layers of high-

κ dielectrics which relies on the precise determination of

quasi-bound states (QBS). The QBS are calculated using the

perfectly matched layer (PML) method. Introducing a com-

plex coordinate stretching allows artifical absorbing layers to

be applied at the boundaries. The QBS appear as the eigenval-

ues of a linear, non-Hermitian Hamiltonian where the QBS

lifetimes are directly related to the imaginary part of the

eigenvalues. The PML method turns out to be an elegant,

numerically stable, and efficient method to calculate QBS

lifetimes for the investigation of direct tunneling through

stacked gate dielectrics.

1. Introduction

The continuous progress in the development of MOS field-

effect transistors within the last years goes hand in hand with

down-scaling the device feature size. To enable further device

down-scaling to the sub-100 nm channel length regime it is

necessary to reduce the effective oxide thicknesses (EOT)

below 2 nm for MOSFETs resulting in high gate leakage

currents. The use of high-κ gate dielectrics provides an option

to reduce the gate leakage current of future CMOS devices

while retaining a good control over the inversion charge [1].
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Gate dielectric stacks consisting of high-κ dielectric lay-

ers such as Si3N4, Al2O3, Ta2O5, HfO2, or ZrO2 have been

suggested as alternative dielectrics. The properties [2–8] are

summarized in Table 1.

Apart from interface quality and reliability, the dielectric

permittivity and the conduction band offset to silicon are of

utmost importance as they determine the gate current den-

sity through the layer. Furthermore, at the interface to the

underlying silicon substrate, an interface layer exists which

is either created unintentionally during processing or inten-

tionally deposited to improve the interface quality. Unfor-

tunately, materials with a high permittivity have a low band

offset and vice versa, so a trade-off between these parameters

has to be found. However, for investigation of tunneling phe-

nomena and especially for optimization purposes, accurate,

but still efficient simulation models are necessary.

2. Calculation of direct tunneling using a lifetime
based approach

Calculation of tunneling currents is traditionally based on

the assumption of a three-dimensional continuum of states

at both sides of the gate dielectric and the conservation of

parallel momentum.

Then, the tunneling current can be described by the Tsu-

Esaki formula [9]

J3D = q
∫ Emax

Emin

T C(Ex , mdiel)N (Ex , mD) dEx , (1)

where T C(Ex , mdiel) is the transmission coefficient and

N (Ex , mD) the supply function. Two electron masses en-

ter this equation: The density-of-states mass in the plane

parallel to the interface mD = 2m∗
t + 4

√
m∗

t m∗
l , which, for
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Table 1 Dielectric permittivity, band gap, and conduction
band offset of dielectric materials

Permittivity Band gap Band offset

κ/κ0 (1) Eg (eV) �EC (eV)

SiO2 3.9 8.9–9.0 3.0–3.5

Si3N4 7.0–7.9 5.0–5.3 2.0–2.4

Ta2O5 23.0–26.0 4.4–4.5 0.3–1.5

TiO2 39.0–170.0 3.0–3.5 0.0–1.2

Al2O3 7.9–12.0 5.6–9.0 2.78–3.5

ZrO2 12.0–25.0 5.0–7.8 1.4–2.5

HfO2 16.0–40.0 4.5–6.0 1.5

(100) silicon with m∗
l = 0.92m0 and m∗

t = 0.19m0 equals

2.052m0, and the electron mass in the dielectric mdiel, which

is commonly used as fit parameter [10].

However, in the inversion layer of MOS devices, the strong

electric field leads to quantum confinement. Whenever elec-

trons are confined or partially confined in movement, this

gives rise to bound or quasi bound states (QBS), and the

assumption of continuum tunneling is no more valid.

In the inversion layers of MOS-structures, a major, if not

the dominant source of tunneling electrons is represented

by quasi bound states [11]. The QBS tunneling current is

proportional to
∑

ni/τi where ni and τi denote the carrier

concentration and the lifetime of the QBS with index i , re-

spectively.

To take account for the tunneling current from both, con-

tinuum and quasi-bound states, (1) has to be replaced by

J=J2D+J3D =kB T q

πh̄2

∑
i,ν

gνm‖
τν(Eν,i (mq))

× ln

(
1 + exp

(EF − Eν,i

kBT

))
+ q

∫ Emax

Emin,1

T C(Ex , mdiel)N (Ex , mD) dEx , (2)

where the symbols gv, m‖, and mq denote the valley degen-

eracy, parallel, and quantization masses (g = 2: m‖ = m t,

mq = m l and g = 4: m‖ = √
m lm t, mq = m t), τν(Eν,i ) is the

lifetime of the quasi-bound state Eν,i , and the integration in

the Tsu-Esaki formula starts from Emin,1 = Elim as indicated

in Fig. 1. The following considerations are focused on the

tunneling current J2D which follows from the QBS.

Within our simulation framework, the QBS are obtained

from the single particle, time-independent, effective mass

SCHRÖDINGER equation:

−h̄2

2
∇ · (m̃−1∇�(x)) + V (x)�(x) = E�(x). (3)

Fig. 1 The potential well of an nMOS inversion layer and its eigen-
states assuming closed boundary conditions. The inset displays the wave
function of the first QBS on a logarithmic scale

Several methods have been proposed to calculate the quasi-

bound states and their respective lifetimes [12].

In a first approximation the energy levels of the QBS can

be estimated by the eigenvalues of the Hamiltonian of the

closed system as displayed in Fig. 1. Since closed bound-

aries are assumed, no information about the broadening and

the associated QBS lifetimes is available. Also, bound states

cannot carry any current, since their wavefunctions � fulfill

the relation:

�∇�∗ − �∗∇� = 0. (4)

A semi-classical approximation based on corrected closed-

boundary eigenvalues which uses a classical formulation of

the lifetime (escape time) is pointed out in [13]. However,

using the closed-boundary eigenvalues for the calculation of

open-boundary QBS lifetimes seems to be questionable.

A more rigorous way to apply open boundary condi-

tions to (3) is the quantum transmitting boundary method

(QTBM) [14] where a computationally intensive scanning

of the derivative of the phase of the reflection coefficient

[12] or the reflection coefficient itself [15] yields the desired

QBS lifetimes. These methods are especially cumbersome in

the presence of strong confinement (high lifetimes).

3. Perfectly matched layer method

Recently, a method based on absorbing boundary condi-

tions (called the Perfectly Matched Layer (PML) method)

for SCHRÖDINGER’S equation has been applied for band struc-

ture calculations in III–V heterostructure devices [16]. In the

present work the PML formalism, which is often used in elec-

tromagnetics, has been applied to determine the energy levels

and the lifetime broadening of QBS in MOS inversion layers.
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The basic principle is to add non-physical absorbing lay-

ers at the boundary of the simulation region (physical re-

gion). This procedure prevents reflections at the boundary of

the physical region. The artificial absorbing layers allow the

application of Dirichlet boundary conditions, and the QBS

are determined by the eigenvalues of the non-Hermitian, lin-

ear Hamiltonian of the system. This yields the desired QBS,

which are the eigenstates of the open system although Dirich-

let boundary conditions are applied.

The absorbing property of the PML region is achieved by

introducing stretched coordinates

x̃ =
∫ x

0

sx (τ ) dτ (5)

in (3). The evaluation of the gradient operator ∇ in one di-

mension yields:

∂

∂ x̃
= 1

sx (x)

∂

∂x
. (6)

Within the PML region, the stretching function sx (x) is given

as sx (x) = 1 + (α + ıβ)xn , with α = 1, β = 1.4, and n = 2,

while it is unity in the physical region as displayed in Fig. 2.

Adding absorbing layers at the boundary of the physical

simulation region, the Hamiltonian becomes non-Hermitian

and admits complex eigenvalues E = Er + ıEi , where the

QBS lifetimes are related to the imaginary parts of the eigen-

values as

τi = h̄/2Ei . (7)

In contrast to the QTBM, the Hamiltonian of the system is

still linear. Thus, all QBS are calculated in one step and no

iteration or scanning procedures are needed.

To more clarify the PML method, let us assume a con-

stant potential V (z) within the PML region. Then, within

this region, the wave function can be written as a plane wave

Fig. 2 The wave function of the first QBS and the complex stretching
function are displayed in the perfectly matched layer region as well as
its transition to the physical region

�(x) = �0 exp(ı k̃x x) with the wave vector k̃x = kx/sx . Con-

sidering two points in the PML region x1, x2 = x1 + dx the

wave vector at the point x2 can be approximated as

kx (x2) ≈ sx (x2)

sx (x1)
kx (x1) = (1 + (α + ıβ) dx). (8)

Therefore, the parameter α scales the phase velocity of the

plane wave, while β acts as a damping parameter. Since this

damping coefficient is greater than zero within the absorbing

region the envelope of the wave functions decay to zero.

This can be seen in Fig. 2. These parameters, as well as the

thickness of the absorbing layer can be varied over a wide

range with virtually no influence on the results as long as there

are no reflections at the boundaries. However, to achieve this

goal, the complex stretching function and its first derivative

have to be continuous.

In the gate region, using QTBM or assuming closed

boundary conditions yields in a superposition of two plane

waves in opposite directions, which can bee seen in the inset

of Fig. 1. In contrast, when using PML, there are no reflected

waves. The wave function is a traveling wave with a constant

envelope function. In the absorbing layer, the wave functions

are gradually decaying to zero (see Fig. 2). The QBS, how-

ever, are reproduced correctly.

For an arbitrary potential well a comparison between the

PML method and the established methods has been carried

out in [17]. A very good agreement between the established

QTBM and the PML formalism has been obtained.

Furthermore, the computational effort of the PML and

QTBM approaches was compared. Figure 3 shows the CPU

time necessary to calculate 1, 3, and 30 quasi-bound states

with the QTB and PML methods as a function of the spatial

Fig. 3 Comparison of the CPU time demand for the PML, and the QTB
methods
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Fig. 4 The potential barrier and its eigenstates assuming open boundary
conditions using the PML technique. The inset zooms the wavefunction
of the first, the second and the third QBS

resolution. For the QTBM, an equidistant grid in energy space

was used to determine the lifetime broadening of the QBS.

Although the dimension of the system increases due to the

additional points in the PML region, the computational effort

of the PML method has shown to be in almost all cases lower

than that of the QTBM.

4. Application

With the described methodology, the gate current density has

been evaluated for a stacked SiO2-Si3N4 and a single SiO2

layer gate dielectric. A doping of NA = 1 × 1017cm−3 in the

bulk and ND = 1 × 1019cm−3 in the poly gate was assumed.

For the investigation of gate leakage currents in MOS tran-

sistors the conduction band edge has been acquired from

a self-consistent SCHRÖDINGER-POISSON solver. As a post-

processing step, the QBS lifetimes have been evaluated using

the PML formalism. Based on an accurate computation of the

QBS lifetimes, the tunneling current has been estimated ac-

cording to (2). For the stacked gate dielectric some of the

extracted quasi-bound states are shown in Fig. 4 considering

the transversal mass as the quantization mass at a bias of 1.5

V. The energy levels, the QBS lifetimes, and their contribu-

tion to the total current density are listed in Table 2. To make a

comparison, the resulting IV-characteristics of the structures

are shown in Fig. 5.

Table 2 The QBS of the MOS capacitor for a gate bias of
1.5 V, the corresponding lifetimes, the values of the supply
function, and their contribution to the gate current density

QBS Er (eV) τl (s) JG (A cm−2)

1 0.054 2.1 × 10−4 3.2 × 10−3

2 0.210 8.5 × 10−5 2.0 × 10−5

3 0.326 3.7 × 10−5 5.1 × 10−8

5 0.507 8.5 × 10−6 1.9 × 10−10

Fig. 5 The gate current density for a single SiO2 layer as well as for
a stacked SiO2-Si3N4 dielectric calculated from the Tsu-Esaki formula
and the lifetime based approach

It can be seen that the gate leakage current of the stacked

dielectric is considerably smaller. Furthermore, we have to

point out that the Tsu-Esaki approach overestimates the gate

current leakage under inversion conditions. Thus, the use of

the more sophisticated lifetime based approach is mandatory

for accurate modeling of direct tunneling through stacked

gate dielectrics under inversion conditions.

5. Summary and conclusion

We presented an efficient lifetime based approach for the

simulation of tunneling currents through high-κ materials.

The calculation of the QBS lifetimes has been performed

using the perfectly matched layer formalism.

In contrast to the traditional QTBM approach which re-

quires a computationally very demanding scanning proce-

dure, the QBS lifetimes appear as the complex eigenvalues

of a non-Hermitian, linear Hamiltonian. Since the equations

to be solved are linear, highly efficient algorithms are avail-

able.

The PML approach was used to evaluate the QBS in MOS

inversion layers and to investigate the impact on direct tun-

neling through the dielectric layer which is, for typical de-

vice parameters, the dominant tunneling component. The

PML formalism represents an efficient and numerically sta-

ble method to determine the QBS which is the key factor for

the integration of QBS tunneling in a device simulator for

rigorous simulation of gate leakage currents through stacked

gate dielectrics.
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