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Abstract. We present an efficient simulation method for lifetime
based tunneling in CMOS devices through layers of high-κ dielectrics,
which relies on the precise determination of quasi-bound states (QBS).
The QBS are calculated with the perfectly matched layer (PML) method.
Introducing a complex coordinate stretching allows artifical absorbing
layers to be applied at the boundaries. The QBS appear as the eigen-
values of a linear, non-Hermitian Hamiltonian where the QBS lifetimes
are directly related to the imaginary part of the eigenvalues. The PML
method turns out to be a numerically stable and efficient method to cal-
culate QBS lifetimes for the investigation of direct tunneling through
stacked gate dielectrics.

INTRODUCTION

The continuous progress in the development of MOS field-effect transistors within
the last decades goes hand in hand with down-scaling the device feature size. To
enable further device down-scaling to the deca nanometer channel length regime, it
is necessary to reduce the effective oxide thicknesses (EOT) below 2 nm, which will
result in high gate leakage currents. The use of high-κ gate dielectrics provides an
option to reduce the gate leakage current of future CMOS devices while retaining a
good control over the inversion charge (1).

Gate dielectric stacks consisting of high-κ dielectric layers such as Si3N4, Al2O3,
Ta2O5, HfO2, or ZrO2 have been suggested as alternative dielectrics. Parameter values
for these materials taken from (2)-(8) are summarized in Tab. I.

Apart from interface quality and reliability, the dielectric permittivity and the
conduction band offset to silicon are of utmost importance as they determine the
gate current density through the layer. Furthermore, at the interface to the underly-
ing silicon substrate, an interface layer exists which is either created unintentionally
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Table I: Dielectric permittivity, band gap, and conduction band offset of dielectric
materials.

Permittivity Band gap Band offset
κ/κ0 [1] Eg [eV] ΔEC [eV]

SiO2 3.9 8.9 – 9.0 3.0 – 3.5
Si3N4 7.0 – 7.9 5.0 – 5.3 2.0 – 2.4
Ta2O5 23.0 – 26.0 4.4 – 4.5 0.3 – 1.5
TiO2 39.0 – 170.0 3.0 – 3.5 0.0 – 1.2
Al2O3 7.9 – 12.0 5.6 – 9.0 2.78 – 3.5
ZrO2 12.0 – 25.0 5.0 – 7.8 1.4 – 2.5
HfO2 16.0 – 40.0 4.5 – 6.0 1.5

during processing or intentionally deposited to improve the interface quality. Unfor-
tunately, materials with high permittivity have a low band offset and vice versa, so
that a trade-off between these parameters has to be found. However, for investigation
of tunneling phenomena and especially for optimization purposes, accurate, and yet
efficient simulation models are necessary.

CALCULATION OF DIRECT TUNNELING USING A LIFETIME BASED AP-
PROACH

Calculation of tunneling currents is frequently based on the assumption of a three-
dimensional continuum of states at both sides of the gate dielectric and the conser-
vation of parallel momentum. Then, the tunneling current can be described by the
Tsu-Esaki formula, (9)

J3D = q
∫ Emax

Emin

TC(Ex,mdiel)N(Ex,mD) dEx , [1]

where TC(Ex,mdiel) is the transmission coefficient and N(Ex,mD) the supply function.
Two electron masses enter this equation: The density-of-states mass in the plane
parallel to the interface, mD = 2m∗

t + 4
√

m∗
tm

∗
l , which, equals 2.052m0 for (100)

silicon with m∗
l = 0.92m0 and m∗

t = 0.19m0 , and the electron mass in the dielectric
mdiel, which is commonly used as a fit parameter (10).

However, in the inversion layer of a MOS-structure, the strong electric field leads
to quantum confinement. Whenever electrons are confined or partially confined in
movement, this gives rise to bound or quasi bound states (QBS), and the assumption
of continuum tunneling is no longer valid. In the inversion layers of MOS-FETs,
a major, if not the dominant, source of tunneling electrons is represented by quasi
bound states (11). The QBS tunneling current is proportional to

∑
ni/τi where ni
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Fig. 1: The potential well of an nMOS inversion layer and its eigenstates assuming
closed boundary conditions. The inset displays the wave function of the first QBS on
a logarithmic scale.

and τi denote the carrier concentration and the lifetime of the QBS with index i,
respectively. To take into account the tunneling current from both, continuum and
quasi-bound states, [1] has to be replaced by

J = J2D + J3D =
kBTq

πh̄2

∑
i,ν

gνm‖

τν(Eν,i(mq))
ln

(
1 + exp

(EF − Eν,i

kBT

))
[2]

+ q
∫ Emax

Emin,1

TC(Ex,mdiel)N(Ex,mD) dEx .

Here, the symbols gν , m‖, and mq denote the valley degeneracy, parallel, and
quantization masses respectively (g = 2: m‖ = mt, mq = ml and g = 4: m‖ =

√
mlmt,

mq = mt), τν(Eν,i) is the lifetime of the quasi-bound state Eν,i, and the integration in
the Tsu-Esaki formula starts from Emin,1 = Elim as indicated in Fig 1. The following
considerations are focused on the tunneling current J2D originating from the QBS.

Within our simulation framework the QBS are obtained from the single particle,
time-independent, effective mass Schrödinger equation:

− h̄2

2
∇ ·

(
m̃−1∇Ψ(x)

)
+ V (x)Ψ(x) = EΨ(x). [3]
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Fig. 2: The wave function of the first QBS and the complex stretching function are
displayed in the perfectly matched layer region as well as its transition to the physical
region.

Several methods have been proposed to calculate the quasi-bound states and their
respective lifetimes (12). In a first approximation the energy levels of the QBS can
be estimated by the eigenvalues of the Hamiltonian of the closed system as displayed
in Fig. 1. Since closed boundaries are assumed, no information about the broadening
and the associated QBS lifetimes is available. It is to note that bound states cannot
carry any current, since their wavefunctions Ψ fulfill the relation: Ψ∇Ψ∗−Ψ∗∇Ψ = 0.

A semi-classical approximation based on corrected closed-boundary eigenvalues,
which uses a classical formulation of the lifetime (escape time) is pointed out in (13).
However, using the closed-boundary eigenvalues for the calculation of open-boundary
QBS lifetimes seems to be questionable.

A more rigorous way to apply open boundary conditions to (3) is the quantum
transmitting boundary method (QTBM) (14) where a computationally intensive scan-
ning of the derivative of the phase of the reflection coefficient (12) or the reflection
coefficient itself (15) yields the desired QBS lifetimes. These methods are especially
demanding in the presence of strong confinement (high lifetimes).
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PERFECTLY MATCHED LAYER METHOD

Recently, a method based on absorbing boundary conditions (known as the Per-
fectly Matched Layer (PML) method) for Schrödinger’s equation has been applied
for band structure calculations in III-V heterostructure devices (16). In the present
work the PML formalism which is often used in electromagnetics, has been applied
to determine the energy levels and the lifetime broadening of QBS in MOS inversion
layers. In contrast to the QTBM, the Hamiltonian of the system is still linear. Thus,
all QBS are calculated in one step and no iteration or scanning procedures are needed.

The basic principle is to add non-physical absorbing layers at the boundary of
the simulation region (physical region). This procedure prevents reflections at the
boundary of the physical region. The artificial absorbing layers allow the application
of Dirichlet boundary conditions, and the QBS are determined by the eigenvalues of
the non-Hermitian Hamiltonian of the system. This yields the desired QBS which are
the eigenstates of the open system, although Dirichlet boundary conditions are ap-
plied. The absorbing property of the PML region is achieved by introducing stretched
coordinates

x̃ =
∫ x

0
sx(τ) dτ [4]

in (3). The evaluation of the gradient operator ∇ in one dimension yields:

∂

∂x̃
=

1

sx(x)

∂

∂x
. [5]

In the artificial layers the stretching function sx(x) is given as sx(x) = 1 + (α + ıβ)xn,
with α = 1, β = 1.4, and n = 2, while it is unity in the physical region as displayed in
Fig. 2. Adding absorbing layers at the boundary of the physical simulation region, the
Hamiltonian becomes non-Hermitian and admits complex eigenvalues E = Er + ıEi.
The QBS lifetimes are related to the imaginary parts of the eigenvalues as τi = h̄/2Ei.

To better clarify the PML method, let us assume a constant potential V (z) in
the PML region. Then, within this region, the wave function can be written as a
plane wave Ψ(x) = Ψ0 exp(ık̃xx) with the wave vector k̃x = kx/sx. Considering two
points in the PML region x1, x2 = x1 + dx the wave vector at the point x2 can be
approximated as

kx(x2) ≈ sx(x2)

sx(x1)
kx(x1) = (1 + (α + ıβ) dx) . [6]

Therefore, the parameter α scales the phase velocity of the plane wave, while β
acts as a damping parameter. Since this damping coefficient is greater than zero in
the absorbing region, the envelope of the wave functions decay to zero, as can be
seen in Fig. 2. These parameters, as well as the thickness of the absorbing layer can
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be varied over a wide range with virtually no influence on the results, as long as
there are no reflections at the boundaries. However, to achieve this goal, the complex
stretching function and its first derivative have to be continuous.

In the gate region, using QTBM or assuming closed boundary conditions results
in a superposition of two plane waves in opposite directions, which can bee seen in
the inset of Fig. 1. In contrast, when using PML, there are no reflected waves. The
wave function is a traveling wave with a constant envelope function. In the absorbing
layer, the wave functions are gradually decaying to zero (Fig. 2). The QBS, however,
are reproduced correctly.

For an arbitrary potential well a comparison between the PML method and the
established methods has been carried out in (17). Very good agreement between the
established QTBM and the PML formalism has been obtained.

Furthermore, the computational effort of the PML and QTBM approaches was
compared. Fig. 3 shows the CPU time necessary to calculate 1, 3, and 30 quasi-bound
states with the QTB and PML methods as a function of the spatial resolution. For
the QTBM, an equidistant grid in energy space was used to determine the lifetime
broadening of the QBS. Although the dimension of the system increases due to the
additional points in the PML region, the computational effort of the PML method
has shown to be in almost all cases lower than that of the QTBM.
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Fig. 3: Comparison of the CPU time demand for the PML, and the QTB methods.
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APPLICATION TO DEVICE SIMULATION

With the described method, the gate leakage currents of nMOS transistors with a
gate length of 50nm have been evaluated. The gate current density has been evaluated
for a stacked SiO2-Si3N4 and a single SiO2 layer gate dielectric having nearly the same
EOT. A doping of NA=3 × 1017cm−3 in the bulk and ND=1 × 1019cm−3 in the poly-
silicon gate was assumed.

For the investigation of gate leakage currents in the whole device, the conduction
band edge has been acquired from the device simulator Minimos-NT (18). It is
displayed for strong inversion at a gate bias of 1.2 V and VDS=0.0V in Fig. 4, and
at drain bias of 0.6 V in Fig. 5. Several one-dimensional cuts through the simulation
region are shown in Fig.6.

As a post-processing step on these cuts the QBS energy levels and the related
lifetimes have been evaluated using the PML formalism. Based on an accurate com-
putation of the QBS lifetimes, the tunneling current has been estimated according to
(2). For the stacked gate dielectric some of the extracted quasi-bound states are shown
in Fig. 7 considering the transversal mass as the quantization mass at VGB=1.2V. The
energy levels, the QBS lifetimes, and their contribution to the total current density
are listed in Tab. II.
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Fig. 4: The band edge energy [eV] of the nMOS device with a stacked gate dielectric
evaluated at a gate bias of 1.5 V and a drain voltage of 0 V.
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Fig. 5: The band edge energy [eV] of the nMOS device with a stacked gate dielectric
evaluated at a gate bias of 1.5 V and a drain voltage of 0.6 V.
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Fig. 6: Cuts of conduction band edge energy of the nMOS transistor.
The y-coordinate is relative to the beginning of the gate contact.
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Fig. 7: Potential barrier and eigenstates assuming open boundary conditions using
the PML technique.

Table II: The QBS of the MOS capacitor for a gate bias of 1.2V, the corresponding
lifetimes, and their contribution to the total gate current density.

QBS Er [eV] τl [s] JG [A cm−2]

1 0.054 2.1 × 10−4 3.2 × 10−3

2 0.210 8.5 × 10−5 2.0 × 10−5

3 0.326 3.7 × 10−5 5.1 × 10−8

5 0.507 8.5 × 10−6 1.9 × 10−10

The resulting IV-characteristics as a function of the gate voltage for zero drain
bias of the two structures are compared in Fig. 8. It can be seen that the gate
current leakage of the stacked dielectric is considerably smaller. Furthermore, we
have to point out that the Tsu-Esaki approach overestimates the gate current leakage
under inversion conditions. Thus, the use of the more sophisticated lifetime based
approach is mandatory for accurate modeling of direct tunneling through stacked gate
dielectrics under inversion conditions.
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Fig. 8: The gate current density for a single SiO2 layer as well as for a stacked
SiO2-Si3N4 dielectric calculated from the Tsu-Esaki formula and the lifetime based
approach.

SUMMARY AND CONCLUSION

We presented an efficient approach for the estimation of lifetime based tunneling
currents through stacked gate dielectrics. The lifetimes of quasi bound states (QBS)
have been evaluated with the perfectly matched layer (PML) formalism. The tradi-
tional approach requires a computationally very demanding scanning procedure. The
QBS lifetimes appear as the complex eigenvalues of a non-Hermitian Hamiltonian.
Since the equation to be solved is linear, highly efficient algorithms are available.
Moreover, the PML approach was used to evaluate QBS in the conduction band on
several cuts of the MOS inversion layer and its contribution to the total gate leakage
current was determined. For typical device parameters, the QBS tunneling is the
dominant tunneling component. The PML formalism represents an efficient and nu-
merically stable method to determine QBS. Therefore, it is appropriate for integration
in a device simulator for the investigation of direct tunneling phenomena.
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