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An overview of models for the simulation of current transport in micro- and na-
noelectronic devices within the framework of TCAD applications is presented. Starting
from macroscopic transport models, currently discussed enhancements are specifically
addressed. This comprises the inclusion of higher-order moments into the transport
models, the incorporation of quantum correction and tunneling models up to dedicated
quantum-mechanical simulators, and mixed approaches which are able to account for
both, quantum interference and scattering. Specific TCAD requirements are discussed
from an engineer’s perspective and an outlook on future research directions is given.
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1. Introduction

Integrated circuits play a key role in modern information society. The continuous

increase in computing performance has been enabled by down scaling of integrated

semiconductor devices. The minimum feature size of integrated circuits has been

continuously reduced in the past decades, a trend that is expected to continue at

an unaltered pace in the next decade, as predicted by the International Technology

Roadmap for Semiconductors [1]. Today, the 90 nm CMOS technology with physical

transistor gate lengths in the range of 40 nm is used in mass production. The func-

tioning of MOS field effect transistors with 6 nm gate length has been demonstrated

in research laboratories [2]. The success of microelectronics technology has partly

been enabled by the aid of sophisticated Technology CAD (TCAD) tools. These

tools are well developed and based primarily upon semi-classical models, often aug-

mented by some quantum mechanical corrections. Due to the aggressive scaling

of integrated transistors, however, quantum mechanical effects become more and

more important, rendering the applicability of these simulation methods question-

able. One challenge in TCAD that can be clearly identified is the development of

new simulation methods adequately describing carrier transport in nano-electronic
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devices. Today this field of research is addressed by many research groups. The

formulations of quantum transport used are based on the density matrix, non-

equilibrium Green’s functions, the Wigner function, and the Pauli Master equa-

tion. The simpler case of quantum-ballistic transport is covered by the Schrödinger

equation supplemented by open boundary conditions.

On the other hand, semi-classical transport in semiconductor devices is well un-

derstood, especially through the availability of Monte Carlo simulation tools which

provide an accurate solution to the Boltzmann equation. Elaborate models of band-

structure and scattering mechanisms can be included. Fig. 1 shows the interrelation

between the three groups of transport models. In this taxonomy quantum trans-

port is assumed to be time irreversible, whereas quantum ballistic transport uses

a time reversible description. If scattering, which is often described in a time irre-

versible manner by the Fermi Golden Rule approximation, is neglected in the von

Neumann equation or the Dyson equation, these formulations simplify to quantum

ballistic ones, as indicated by the arrows in Fig. 1. In the semi-classical limit the

Wigner equation simplifies to the Boltzmann equation. Irreversibility of the latter

has already been proven by Boltzmann by means of the H-theorem.

Pure State

Wave Function / Schroedinger Equation

NEGF / Dyson Equation

Wigner Function / Wigner Equation

Mixed State

Classical State

Distribution Function / Boltzmann Equation 

Semiclassical Transport

Quantum Transport

Quantum Ballistic Transport

Density Matrix /  von Neumann EQ

Fig. 1. Hierarchy of transport equations in semiconductor current transport modeling.

A semiconductor device often represents a multi-scale problem, where quan-

tum mechanical effects occur in some small active region embedded in an extended

classical region. Such situations call for the introduction of hybrid approaches, con-

necting semi-classical and quantum transport models.

All transport models, independently of their complexity, need to be coupled to

the Poisson equation

∇ · (κ∇ϕ) = −ρ(ϕ) , ρ(ϕ) = q(p− n+ C) (1)

which determines the self-consistent electrostatic potential ϕ. The transport model

gives an in general non-linear dependence of the space charge density ρ on the

potential ϕ. Of utmost importance from a numerical point of view is the availability
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of efficient and robust iteration schemes for the solution of the non-linear system

of model equations.

Section 2 addresses demands on semi-classical transport models, including mo-

ment equations, the Monte Carlo method, applications to strained semiconductors,

and quantum-corrections. Extensions of semi-classical models by quantum correc-

tions and tunneling models are the subject of Section 3. Section 4 deals with differ-

ent formulations of quantum-ballistic transport such as tunneling models, adiabatic

decomposition and the quantum transmitting boundary method. As typical appli-

cations multi-gate SOI FETs and carbon nanotube FETs are presented. Finally,

quantum transport in the Wigner function formulation is considered in Section 5.

Applications to ultra-short double gate FETs and resonant tunneling diodes are

discussed.

2. Semi-classical Transport

Although semi-classical transport in semiconductors is well understood, research

on this subject is still needed for several reasons. Transport models based on the

moments of the Boltzmann equation, such as drift-diffusion and energy transport,

are well accepted in TCAD. With down-scaling, however, these transport descrip-

tions are gradually losing validity. For TCAD applications the Monte Carlo method

still does not represent an alternative due to excessive computation time require-

ments. An extension of the computationally more efficient moment-based transport

models is therefore desirable. Demands on semi-classical transport calculations also

arise from new effects currently exploited or investigated to increase transistor on-

current. Such effects are for instance mobility enhancement in strained silicon and

germanium channels, possibly in combination with a favorable substrate orienta-

tion and channel orientation. Detrimental effects due to new materials and new

structures need to be quantified, such as mobility reduction in ultra-thin semicon-

ductor films, remote Coulomb scattering or soft-phonon scattering in the presence

of high-k materials.

The semi-classical description of charge transport in semiconductor devices is

given by the Boltzmann equation [3].

∂f

∂t
+ u · ∇rf +

sν q

~
E · ∇kf =

(

∂f

∂t

)

coll

(2)

Here, f(r,k, t) is the distribution function of carriers in phase space, formed by

position r and momentum (~k). The charge sign sν distinguishes between electrons

and holes, ν = n, p. The right-hand side represents the collision operator which

describes scattering of particles due to phonons, impurities, interfaces, and vari-

ous other scattering sources. However, for realistic structures, a direct numerical

solution of this equation by discretization of the phase space is computationally

prohibitive. Approximate solutions can be obtained by the method of moments.

Monte Carlo methods allow accurate evaluation of the moments of f .
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2.1. Moment Equations

Most widely used in TCAD are the drift-diffusion model, based on two moments of

the Boltzmann equation, and the energy transport model, based on four moments.

Currently six moments transport models are being developed [4]. Such models,

while computationally still efficient compared to the Monte Carlo method, provide

additional information on the shape of the distribution function, which allows con-

struction of improved models for hot-carrier effects, such as avalanche generation,

hot-carrier induced gate currents, hot-carrier diffusion in an SOI floating body, and

non-local effects in the deca-nanometer regime.

Using the method of moments one constructs equations for statistical averages

defined as

〈Φ〉 =
1

4π3

∫

Φ(k) f(r,k, t) d3k , (3)

where Φ(k) is a freely chosen weight function. Each term of (2) is multiplied by

a set of suitable weight functions and integrated over k-space. This yields a set

of time-dependent differential equations in r-space. This procedure generates an

infinite set of equations which must be closed by a suitably chosen ansatz. The

weight functions are scalars for even orders and vectors for odd orders. Commonly

the following physically-motivated weight functions are chosen.

Φ0 = 1 Φ2 = E Φ4 = E2

Φ1 = ~k Φ3 = u E Φ5 = u E2
(4)

Taking the moment of the Boltzmann equation gives the following general moment

equation,

∂〈Φj〉

∂t
+ ∇r · 〈u⊗ Φj〉 − sν qE · 〈∇p ⊗ Φj〉 =

∫

d3 kΦj

(

∂f

∂t

)

coll

(5)

where ⊗ denotes the tensor product. To obtain a closed set of equations several ap-

proximations have to be made. One concerns the moment of the scattering integral,

which is frequently approximated by a macroscopic relaxation time expression of

the form
∫

d3kΦj

(

∂f

∂t

)

coll

∼= −
〈Φ〉 − 〈Φ〉0

τΦ
(6)

The distribution function can be split in its symmetric and antisymmetric part.

In the diffusion approximation it is assumed that the antisymmetric part is small

compared to the symmetric part, which implies that the displacement of the distri-

bution function is small compared to its width. As a consequence, the symmetric

part will be isotropic, thus depending only on the modulus of k.

f(k) = fS(|k|) + fA(k) (7)
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With this assumption all tensor-valued averages become scalar quantities. Finally,

it can be argued that at technical frequencies the time derivatives of the fluxes can

be neglected. As a result one obtains the following balance equations

∂〈1〉

∂t
+ ∇ · 〈u〉 = 0 (8)

∂〈E〉

∂t
+ ∇ · 〈u E〉 − sν qE · 〈u〉 = −

〈E〉 − 〈E〉0
τE

(9)

∂〈E2〉

∂t
+ ∇ · 〈u E2〉 − sν 2 qE · 〈u E〉 = −

〈E2〉 − 〈E2〉0
τΘ

(10)

and the following flux equations

2

3
∇〈E〉 − sν qE 〈1〉 = −mν

〈u〉

τm
(11)

2

3
∇〈E2〉 − sν

5

3
qE 〈E〉 = −mν

〈u E〉

τS
(12)

2

3
∇〈E3〉 − sν

7

3
qE 〈E2〉 = −mν

〈u E2〉

τK
(13)

In analogy to the energy-transport model new variables are introduced, where ν

denotes the carrier concentration, Tν the carrier temperature, Jν the electrical

current density, and Sν the energy flux density.

〈1〉 = ν, 〈E〉 =
3

2
kB ν Tν , 〈E2〉 =

15

4
k2
B ν Tν Θν , 〈E3〉 =

105

8
k3
B ν M6

〈u〉 =
Jν

sν q
, 〈u E〉 = Sν , 〈u E2〉 = Kν

The new variables are a second order temperature Θν, the moment of sixth order

M6, and a flux Kν related to the kurtosis of the distribution function. Adding

generation-recombination terms the balance equations become

∇ · Jν = −sν q (
∂ν

∂t
+Rν) (14)

∇ · Sν = −C4

∂(ν Tν)

∂t
+ E · Jν − C4 ν

Tν − TL

τE
+GEν

(15)

∇ ·Kν = −C5

∂(ν Tν Θν)

∂t
+ 2 sν qE · Sν − C5 ν

Tν Θν − T 2
L

τΘ
+GΘν

(16)

C4 =
3

2
kB C5 =

15

4
k2
B (17)

In the following flux equations the mobility µν = qτm/mν is introduced:

Jν = −C1

(

∇(ν Tν) − sν

q

kB

E ν
)

C1 = sν kB µν (18)

Sν = −C2

(

∇(ν Tν Θν) − sν

q

kB

E ν Tν

)

C2 =
5

2

k2
B

q

τS
τm

µν (19)

Kν = −C3

(

∇(ν M6) − sν

q

kB

E ν Tν Θν

)

C3 =
35

4

k3
B

q

τK
τm

µν (20)
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The drift-diffusion transport model consists of the continuity equation (14) and

the current relation (18). The latter is decoupled from the next higher equation

by introducing a closure assumption on the second order moment, Tν = TL. The

physical meaning is that the carrier gas is in equilibrium with the lattice. From an

engineering point of view, the drift-diffusion model has proven amazingly successful

due to its efficiency and numerical robustness. These properties make feasible two-

and three-dimensional numerical studies on fairly large unstructured grids. The

robustness comes from the fact that in this approach the current density is given

by a potential flow with the gradient of the quasi-Fermi level as the driving force.

However, several shortcomings of this model are critical for miniaturized devices.

Especially hot-carrier effects such as impact ionization may be difficult to estimate

and non-local effects such as velocity overshoot are neglected entirely.

Higher-order transport models such as the hydrodynamic [5] and energy-

transport [6] models are supposed to overcome some of the shortcomings of the

drift-diffusion model. The energy-transport model takes into account additionally

the carrier energy balance equation (15) and the energy flux equation (19). An

assumption on the fourth order moment has to be made to close the system. As-

suming a heated Maxwellian distribution for the symmetric part gives the closure

relation Θν = Tν . Implementations of the energy-transport model are available in

commercial and academic device simulators. However, problems with the energy-

transport model for TCAD applications are manyfold. It typically tends to over-

estimate non-local effects and thus the on-current of a device. With the heated

Maxwellian assumption implicit in the model the high energy tail of the carrier

distribution is often considerably overestimated. This may result in unacceptable

errors, for example, in the estimation of the hot carrier induced gate tunneling

current [7]. For the specific situation of a partially-depleted SOI MOSFET it has

been shown that the energy-transport model may fail completely in predicting the

device characteristics. The reason is an overestimation of hot carrier diffusion into

the floating body of the device [8].

Going one step further in the model hierarchy results in a transport model of

sixth order. A balance equation for the average squared energy (16) and the related

flux equation (20) are added. To close the equation system, the moment of sixth

order M6 has to be approximated using the lower order moments. For a Maxwellian

distribution function and parabolic bands one would obtain M6 = T 3
ν . However,

as the six-moments model goes beyond the heated-Maxwellian approximation by

treating the kurtosis of the distribution function as an unknown a more general

closure relation is desirable. In [9] an empirical closure relation has been proposed

taking into account also the second order Temperature Θν .

M6 = T 3
ν

(Θν

Tν

)c

(21)

From Monte Carlo simulations, which are considered to be an accurate reference,

the ratio MMC
6 /M6 has been analyzed to determine the free parameter c in (21).
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Fig. 2. Comparison of macroscopic transport models with full-band
Monte Carlo. While all models yield similar results at large gate
lengths, only the six-moments model reproduces the short-channel
Monte Carlo results.

In [10] a value of c = 2.7 has been estimated. Compared to the energy-transport

models, two additional relaxation times are needed, namely the relaxation time of

the second order temperature τΘ, and the kurtosis flux relaxation time τK . Since

analytical models for these new parameters are not available, in [10] tabulated

parameter values obtained from bulk Monte Carlo simulations are used.

Sonoda et al. [11] proposed a similar six moments transport model, however,

with a very restrictive closure relation. Another difference is that they used a mi-

croscopic relaxation time approximation as proposed by Stratton [6], whereas in the

equations above the macroscopic relaxation time approximation (6) is employed.

As a calibration tool, the full-band Monte Carlo method has become accepted,

since it can precisely account for the various scattering processes in the scattering

operator [12]. Fig. 2 shows a comparison of different macroscopic simulation ap-

proaches with full-band Monte Carlo results for a 250 nm and a 50 nm double-gate

MOSFET [10]. It can be seen that transport models based on two, four, and six mo-

ments deliver similar results for the long-channel device, while only the six moments

model is able to reproduce the full-band Monte Carlo results for the short-channel

device.

2.2. The Monte Carlo Method

The Monte Carlo method is well established for studying semiconductor devices and

exploring semiconductor properties. The method simulates the motion of charge

carriers in the six-dimensional phase space formed by position and momentum.

Subjected to the action of an external force field, the point-like carriers follow tra-
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jectories governed by Newton’s law and the carrier’s dispersion relation. These drift

processes are interrupted by scattering events which are assumed local in space and

instantaneous in time. The duration of a drift process, the type of scattering mech-

anism, and the state after scattering are selected randomly from given probability

distributions characteristic to the microscopic process. The method of generating

sequences of drift processes and scattering events appears so transparent from a

physical point of view, that it is frequently interpreted as a direct emulation of

the physical process rather than as a numerical method. In fact, the Monte Carlo

algorithms employed in device simulation were originally devised from merely phys-

ical considerations, viewing a Monte Carlo simulation as a simulated experiment.

These algorithms are Ensemble Monte Carlo [13][14] and One Particle Monte Carlo

[15][16]. The alternative way, namely to state the transport equation first and to

formulate then a Monte Carlo algorithm for its solution, has been reported end of

the 1980’s [17] [18]. A link between physically-based Monte Carlo methods and nu-

merical Monte Carlo methods for solving integrals and series of integrals has been

established [19].

In [17] the Boltzmann equation is transformed to an integral equation which

is then iteratively substituted into itself. The resulting iteration series is evaluated

by a new Monte Carlo technique, called Monte Carlo Backward (MCB) since the

trajectories are followed back in time. All trajectories start from the chosen phase

space point, and their number is freely adjustable and not controlled by the physical

process. MCB allows for the evaluation of the distribution function in a given point

with a desired precision. The algorithm is useful if rare events have to be simulated

or the distribution function is needed only in a small phase space domain. Since

the original MCB algorithm turned out to be instable, a stable variant has been

proposed in [20].

The weighted ensemble Monte Carlo (WEMC) method allows the use of arbi-

trary probabilities for trajectory construction, such that particles can be guided to

a phase space region of interest [21][22]. The unbiased estimator for the distribution

function contains a product of weights which are given by the ratio of the real and

the modified probabilities of the selected events.

The large variations of the carrier concentration in a realistic device impose se-

vere problems upon the common MC algorithms. Statistical enhancement methods

are required to reduce the variance in rarely visited phase space regions of interest.

Trajectory multiplication schemes used in various MC device simulators [23][24][25]

are extensions of the method of Phillips and Price [26]. Several variable-weight or

population control techniques have been developed for the EMC [27][28][29][30].

A comparison of statistical enhancement methods is given in [31]. Application of

the event bias technique to variance reduction in device simulation is reported in

[32][33]. The MCB method is another powerful technique to simulate rare events,

whose potential is yet to be employed in future applications.

The work of Kurosawa in 1966 [34] is considered to be the first account of an

application of the MC method to high-field transport in semiconductors. The fol-
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Fig. 3. Acoustic deformation potential scattering rate of electrons in
silicon for analytical and numerical band structure models.

lowing decade has seen considerable improvement of the method and application to

a variety of materials [35]. Early papers deal with gallium arsenide [36] and germa-

nium [37]. In the mid 1970s a physical model of silicon has been developed, capable

of explaining major macroscopic transport characteristics [38][39]. The used band

structure models were represented by simple analytic expressions accounting for

non-parabolicity and anisotropicity. With the increase of the energy range of in-

terest then the need for accurate, numerical band structure models arose [40][12]

[41][42]. For electrons in silicon, the most thoroughly investigated case, it is be-

lieved that a satisfactory understanding of the basic scattering mechanisms at high

energies has been reached, giving rise to a new “standard model” [43]. The effect of

the band structure model on the scattering rate is shown in Fig. 3. Of paramount

practical relevance are the transport properties of carriers in FET channels. A large

normal field in a bulk device or the geometric confinement in a thin semiconduc-

tor film give rise to size quantization and the formation of subbands. Especially

with the introduction of strain in the channel region research on classical transport

in a subband system has regained considerable interest [44,45]. The effect of size

quantization on the scattering rate is shown in Fig. 4.

2.3. Strain Effects

In the last years enormous research efforts have been devoted to the study of new

materials compatible with silicon technology and new device structures for im-

proving the speed of ULSI circuits. Strained silicon has emerged as a promising

material, since it offers both higher electron and hole mobility than unstrained

silicon. In some cases improvement by a factor of more than two was both theoret-
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Fig. 4. Acoustic deformation potential scattering rate of electrons in
a silicon inversion layer. Due to the anisotropic effective mass two
subband ladders are formed.

ically predicted and experimentally confirmed. Strained silicon layers are achieved

by epitaxial growth on SiGe buffers. Due to the lattice mismatch, a pseudomor-

phically grown silicon layer on a relaxed SiGe buffer experiences a biaxial tensile

strain, provided that the layer thickness is below a critical value to prevent strain

relaxation. Both compressively and tensile, uniaxially strained silicon channels have

been achieved by specific process variants [46]. Biaxial strain leads to a modifica-

tion of the conduction band, as shown in Fig. 5. The 6-fold degenerate ∆6-valleys

in silicon is being split into 2-fold degenerate ∆2 valleys (lower in energy) and 4-

fold degenerate ∆4 valleys (higher in energy). The lower in-plane effective mass

of electrons in the ∆2 valleys and the reduction of inter-valley phonon scattering

lead to an enhancement of electron mobility. To enable predictive TCAD simula-

tions a reliable set of models for the Si/SiGe material system is required. Such a

set has to include models for the band structure parameters and deformation po-

tentials. Pseudopotential calculations have been reported in [47,48]. The transport

properties of strained silicon or SiGe layers have been theoretically investigated

using Monte Carlo calculations [49,50,51,52,53] or near equilibrium solutions to the

Boltzmann equation [47]. A comprehensive set of strain-dependent models for pa-

rameters such as the low-field, high-field and the surface mobility, energy relaxation

time and carrier life times for Technology CAD purposes is yet to be developed.

Possible approaches are to further use analytical models or tabulated Monte Carlo

data in a device simulator [54].
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3. Quantum Effects

Within the macroscopic transport models presented above, quantum-mechanical

effects are usually accounted for by means of quantum corrections in the conti-

nuity equations. However, the fabrication of structures in the nanometer regime

triggered the development of quantum-mechanical modeling tools. Such tools be-

came especially important for the evaluation of gate dielectrics, which represent

the smallest feature scale in microelectronics. Neglecting quantum confinement in

this regime leads to results which are not just slightly inaccurate, but systemati-

cally wrong. As an example, the CV-characteristics of an 1.5 nm dielectric layer is

shown in Fig. 6 for different poly doping concentrations calculated classically and

quantum-mechanically and showing a large discrepancy under inversion conditions.

This apparent inaccuracy of conventional models justified the development of one-

dimensional quantum device simulators which are today established tools for the

characterization of gate dielectric layers [55,56,57]. One-dimensional solutions of

the Schrödinger equation are also frequently used to derive correction factors for

the carrier concentration calculated by macroscopic transport models [58,59,60].

They can be used to yield a quick estimate of quantum-confinement related effects

without degrading the efficiency of the device simulator used. However, based on

the closed-boundary Schrödinger equation charge transport is neglected.

A quantum correction to classical Monte Carlo simulations has been attempted

by using an effective potential instead of the self-consistent potential determined

by the Poisson equation [61,62]. The effective potential can be obtained by a con-

volution of the electrostatic potential with a Gaussian function which leads to a

smoothing of the original potential. A quantum correction based on the Schrödinger

equation applied to a full-band Monte Carlo simulator is reported in [63].

4. Quantum-Ballistic Transport

The term quantum-ballistic designates quantum-mechanical current transport

without energy dissipating scattering processes. Quantum-ballistic models are often

applied to the simulation of gate leakage caused by tunneling.
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4.1. Tunneling Models

The central quantity for the description of tunneling is the transmission coefficient

TC(E). It is used in the so-called Tsu-Esaki formula [64] to determine the tunneling

current density.

J =
4πmeffq

h3

Emax
∫

Emin

TC(Ex)N(Ex) dEx (22)

The supply function N(Ex) depends on the carrier distribution function at the inter-

face. Various methods such as the Wentzel-Kramers-Brillouin (WKB), the transfer-

matrix, and quantum transmitting boundary method have been proposed to calcu-

late the transmission coefficient [65]. The resulting tunneling currents can be incor-

porated into moment-based transport models by adding generation/recombination

terms to the continuity equation.

4.2. Adiabatic Decomposition

The ongoing reduction of channel lengths raises the need for a fully quantum-

mechanical treatment of carrier transport. This makes the solution of Schrödinger’s

equation with open boundary conditions necessary, which can be accomplished by

means of the quantum transmitting boundary method as shown in [66,67]. An

established and sophisticated framework for these calculations is based on the non-

equilibrium Green’s Function method, which has been used for one-dimensional

studies of resonant tunneling diodes [68]. Two- and three-dimensional quantum
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ballistic simulations can be performed by means of an adiabatic decomposition of

wave functions into one or two confinement directions [69,70].

The idea of adiabatic decomposition is demonstrated in the following for a two-

dimensional structure with potential V (x, z) [71]. Here it is assumed that z denotes

the direction normal to a channel and that current is predominantly flowing in x

direction. The starting point is the two-dimensional Schrödinger equation.

−
~

2

2

(

1

mx

∂2

∂x2
+

1

mz

∂2

∂z2

)

ψ(x, z) + V (x, z)ψ(x, z) = Eψ(x, z) (23)

With respect to the z-coordinate the wave function ψ(x, z) is now expanded in a

series.

ψ(x, z) =
∑

n

φn(x) ζn(z;x) (24)

The basis ζn is obtained from a solution of the one-dimensional Schrödinger equa-

tion in transverse direction at some given lateral position x0.

−
~

2

2mz

∂2

∂z2
ζn(z;x0) + V (x0, z)ζn(z;x0) = ǫn(x0)ζn(z;x0) (25)

The eigenvalue ǫn(x) gives the position-dependent energy of the n-th subband. The

expansion coefficients φn(x) are determined by a coupled system of Schrödinger

equations with coupling coefficients Anm and Bnm.

−
~

2

2mx

d2

dx2
φn(x) +

(

ǫn(x) +Ann(x)
)

φn(x)

+
∑

m 6=n

(

Anm(x)φm(x) +Bnm(x)
dφm

dx

)

= Enφn(x) (26)

Anm(x) = −
~

2

2mz

∫

ζn(z;x)
∂2ζm(z;x)

∂z2
dz (27)

Bnm(x) = −
~

2

mz

∫

ζn(z;x)
∂ζm(z;x)

∂z
dz (28)

In the adiabatic approximation the coupling terms are neglected. The problem

simplifies to a solution of decoupled one-dimensional Schrödinger equations for each

subband.

The adiabatic decomposition can typically be applied to the channel of a

FET. Fig. 7 depicts a cross-section through the channel of different multi-

gate silicon-on-insulator devices, namely a FinFET and a Π-gate FET [72].

Three-dimensional device simulations have been performed for turned-off devices

(VDS=1.0V, VGS=0.0V) by means of coupling a two-dimensional Schrödinger-

Poisson solver to the device simulator Minimos-NT [73], and the figures show

the resulting carrier concentrations. While only the gate-all-around structure can

fully deplete the channel, the Π-gate FET efficiently shields the channel from the

drain bias, while posing only moderate additional process complexity [74].
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Fig. 7. Carrier concentration in the middle of the channel of a turned-off triple-gate FinFET
(top) and a Π-FET (bottom). The Π-gate efficiently suppresses the spurious drain field.

Carbon nanotube (CNT) transistors can also be well described by one-

dimensional effective Schrödinger equations resulting from an adiabatic decom-

position. CNTs have emerged as promising candidates for nanoscale field effect

transistors. High performance devices were achieved recently [75,76]. The contact

between metal and CNT can be of Ohmic [77] or Schottky type [78,79,80]. Schot-

tky contact CNTFETs operate by modulating the transmission coefficients of the

Schottky barriers at the metal-CNT interfaces [80,81]. A CNTFET can be operated

as an n-type or p-type device just by applying positive or negative voltages to the

gate and drain contacts [82]. Two important figures of merit of FETs are the sub-

threshold slope and the Ion/Ioff ratio. To improve these parameters the coupling
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between gate and CNT should be increased. This can be achieved by using thin high-

κ materials as a gate dielectric [76]. Due to ambipolar behavior of Schottky barrier

CNT-FETs the off-current is often intolerably high [82,83,84]. The reason of this

behavior is that carrier injection at the source and drain contacts is controlled by

the same gate, hence by increasing the coupling between the gate and the CNT

the off-current also increases. To suppress the ambipolar behavior a double gate

structure for CNTFETs has been proposed [85], see Fig. 8. Using this structure

the carrier injection at the source and drain contacts can be separately controlled.

For an n-type device electron injection at the source contact can be controlled by

the first gate, while detrimental hole injection at the drain contact can be reduced

by the second gate. Thus, the ambipolar behavior of CNTFETs can be completely

suppressed, as seen in Fig. 9.

4.3. Multi-dimensional Schrödinger Solvers

Recently, simulators providing a fully two-dimensional solution of the open-

boundary Schrödinger equation have been reported and applied to the simulation

of 10 nm double-gate MOSFETs [86,87]. Besides the requirement for a fine and

sometimes even equidistant mesh, a main obstacle in these approaches is that the

treatment of scattering is not straightforwardly possible. Furthermore, these sim-

ulators are usually limited to specific geometries, restrictive grids, or small length

scales, which makes their usability for engineering applications questionable. Nev-

ertheless, these simulation approaches are necessary for the estimation of upper

bounds of current transport at the quantum limit.

5. Quantum Transport

The methods described so far are either based on the assumption of pure classical

or pure quantum transport. Modern microelectronic devices, however, are charac-

terized by the transition between large reservoirs with strong carrier scattering, and
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(DG) CNT transistors with two different voltages on the second gate.

small regions where quantum effects are important or even dominate. To first order,

quantum correction models can account for these effects. A more rigorous approach

is to consider models derived from the Wigner equation. The Wigner function is

given by a transformation of the density matrix [88,89].

fw(r,k, t) =

∫

ρ
(

r +
s

2
, r −

s

2
, t

)

exp(−ık · s) ds (29)

The kinetic equation for the Wigner function is similar to the Boltzmann equation,

however with an additional potential operator at the right-hand side.
(

∂

∂t
+ u · ∇r +

s q

~
E · ∇k

)

fw =

∫

Vw(r,k − k′)fw(k′, r, t)dk′ +

(

∂fw
∂t

)

coll

(30)

Here it is assumed that the potential is decomposed into a smoothly varying,

classical component and a rapidly varying, quantum-mechanical component, V =

Vcl +Vqm. The classical force is then defined as sqE = −∇Vcl. The kernel of the po-

tential operator is given by the Wigner-Weyl transform of the quantum-mechanical

component.

Vw(r,k) =
1

ı~ (2π)3

∫

(

Vqm

(

r +
s

2

)

− Vqm

(

r −
s

2

))

exp (−ik · s) ds (31)

Using the method of moments, from (30) once can derive quantum drift-diffusion

and quantum hydrodynamic models [90]. These models are more suitable for the im-

plementation in device simulators than a Schrödinger-Poisson solver which strongly

depends on non-local quantities. However, it was reported that, while the carrier

concentration in the inversion layer of a MOSFET can be modeled correctly, the

density gradient method fails to reproduce tunneling currents [91].
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Fig. 10. Wigner Monte Carlo results of electron concentration and mean energy for a resonant
tunneling diode.

Implementations of Monte Carlo methods for solving the Wigner device equation

(30) have been reported [92,93]. Monte Carlo methods allow scattering processes

to be included on a more detailed level [94,95], as compared to the finite-difference

method [89] which is practically limited to a one-dimensional momentum space and

the relaxation time approximation. Construction of new Monte Carlo algorithms

is complicated by the fact that the kernel of the integral equation to solve is not

positively defined. As a consequence, the commonly applied Markov Chain Monte

Carlo method shows a variance exponentially increasing with time, prohibiting its

application to realistic structures or larger evolution times [96,97,93]. Because of

this so-called negative sign problem additional measures have to be introduced that

prevent a run-away of the particle weights and hence of the variance [98,94].

This approach allows a unified treatment and a seamless transition between

classical and quantum-mechanical regions in a device [98]. This method has been

applied to the simulation of resonant tunneling diodes as shown in Fig. 10 and it

was recently used for the simulation of 10 nm double-gate MOSFETs [99].

6. Conclusions

Semiconductor physics is a vast field and simulation approaches abound. Physi-

cists are often tempted to use overly complicated approaches, in an understandable

effort not to lose the important physics. However, some constraints for engineer-

ing application should be kept in mind. Models must be efficient: Timely results

are often more valuable than accurate analyses [100]. There is a need for three-

dimensional simulations, even if these are only rarely applied to check for spurious

effects. Device simulators must allow a coupling with process simulators, since a

detailed, physics-based transport model is of no use if geometry and doping are

not described properly. Therefore, support of unstructured grids is necessary. Fur-

thermore, the simulators should be for general-purpose and not limited to specific
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geometries or simulation modes. It is still not clear which of the outlined quantum

transport approaches will find its way into integrated TCAD environments, but its

further success depends on efficient and accurate modeling of these new effects.
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