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Abstract

Electrical characteristics of the hopping transport in organic semiconductors are studied theoretically. Based on percolation theory of
hopping between localized states, an analytical mobility model is obtained. This model is applied to the analysis of both the electric field
dependence and the temperature dependence of the mobility. The results agree quantitatively with recent experimental data.
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1. Introduction

Organic semiconductors have witnessed a considerable
development in recent years, mainly pushed by the
realization of LEDs and displays whose cost and perfor-
mance are potentially better with respect to more conven-
tional solutions [1,2]. In parallel, understanding the charge-
carrier transport properties in these organic materials is of
crucial importance to design and synthesize better materi-

als and to improve device performances. Two of the most -

important parameters are conductivity and mobility of the
charge carriers. In particular, the dependence of conduc-
tivity on temperature and electric field has been extensively
studied in various papers [3—5]. The traditional approach to
the analysis of the temperature dependence in disordered
organic systems is based on the Miller—Abrahams expres-
sion [4]. The electric-field dependence in such systems
shows Poole-Frenkel behavior In u o exp(y~/E) [3]. How-
ever, a mechanism is needed to explain such behavior of
conduction. The field effect on the variable range hopping
(VRH) at zero temperature was considered by Shklovskii
[6]. A more systematic derivation of the temperature
dependence based on the VRH and percolation theory
was given in [7,8]. Although this model has been applied
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successfully to describe the temperature dependence of
conductivity in organic materials, it is difficult to account
for the experimentally observed electric field dependence.

In the present work, we have derived an expression for
electric-field-dependent conductivity based on the VRH
theory. In this model, it is assumed that the localized states
are distributed randomly in both space and energy
coordinates, and the states are occupied according to
Fermi-Dirac statistics. The present theoretical calculations
are applied to explain recent experiment. A good agree-
ment between theory and experiment is observed.

2. Model theory

For a disordered organic semiconductor system, we
assumed that localized states are randomly distributed in
both energy and space coordinates, and that they form a
discrete array of sites. When an electric field E exists, the
transition rate of a carrier hopping from site 7 to site j is
described as [9]
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where ¢; and ¢; are the energy in the absence of electric field
at site 7 and site j, y depends on the phonons spectrum, ot
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is the Bohr radius of the localized wave function, kg is the
Boltzmann constant, g is the electrons charge, Ry is the
distance between the two sites / and j, and 0 is the angle
between F and Ry Assuming no correlation between
occupation probability of different localized states, the
current between the two sites is given by
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where y; and u; are the chemical potentials of sites i
and j [10].

Ijj = yexp [—ZocR,-j -

3, Low electric field regime

To determine the conductivity of an organic system, one
can use percolation theory regarding the system as a
random resistor network [11]. In the case of low electric
field, the resulting voltage drop over a single hopping
distance (Au < kgT) is small. The conductance between sites
i and j can be simplified from Eq. (2) to the form

o = oo exp(—sy) 3)

and
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where ¢g is the Fermi-energy and oy is prefactor. In this

model, we assume an exponential density of states (DOS)
for organic semiconductors as

s ~ 20R; + )]
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N, is the number of states per unit volume and Ty is a
parameter that indicates the width of the exponential
distribution. According to [8], the Fermi-energy ¢p is fixed
by the condition

6 = exp —E— \I(1 = T/To)C(1 + T/Ty), 6)
k B To

here & is the fraction of occupied states and I' is the gamma

function. According to percolation theory [7], at the onset

of percolation the critical number B, can be written as

B, =—. (N
B. = 2.8 for a three-dimensional amorphous system, Ny
and N; are respectively the density of bonds and density of

sites in this percolation system, which can be calculated as
[8,12]
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and
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Here R denotes the distance vector between sites i and J,
and s is the exponent of the conductivity given by the
relation o = gpe™* [13].

Substituting (8) and (9) into (7) results in a percolation
criterion for an organic system as
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This yields the expression for conductivity as

o — g TR TN (_T_o ? 1 )
=90\ "24EB, \T) “P\TA=T/ToT(1+T/To)

(- 22)" - (o) ]}

Eq. (11) is obtained assuming

e that the site positions are random,
e the energy barrier for the critical hop is large,
e and the charge carrier concentration is very low.

To describe the mobility, we use the mobility definition
given by [14]
1

Ty
u=a(d, T)‘fm-

Using expression (11), ¢ has been calculated as a function
of T at an electric field of 100 V/cm, as shown in Fig. 1. One
can see the linear dependence of conductivity on T4 (the
dashed line is a guide to the eye). We also use the presented
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Fig. 1. Plot of log o versus T"/* with the electric field 100 V/cm.
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model to calculate the temperature and electric field
dependences of the conductivity and mobility of ZnPc. In
Fig. 2, the curves are obtained from (11) using
60 =12.5%x10°S/m, T,=485K and a=03A"". The
experimental data are from [14].

Figs. 3 and 4 show the mobility plotted semilogarithmi-
cally vs. T~! and T2 Symbols are TOF experimental data
from [15] and the solid lines are the results of the analytical
model. The dashed line is to guide the eye. In both
presentations a good fit is observed. But when plotted as
log p versus 772, when temperature is lower than the
transition temperature T, = 210K, the slope is reduced.
This transition has also been observed by Monte-Carlo
simulation [16].

The field dependence of the conductivity is presented in
Fig. 5. The conductivity is approximately constant for very
low fields, and increases as we increase E. This is the result
of the fact that fields can decrease the activation energy for
forward jumps, enabling the motion of carriers. We also
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Fig. 2. Conductivity and mobility versus temperature.
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Fig. 3. Logarithm of the mobility versus 7~'. The g:lectric field is
1.0 x 10°V/em. op = 1.1 x 10° Sjem, Tp = 340K, « = 0.5A™
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Fig. 6. Electric field dependence of mobility at 290 K. Symbols represent
Monte—Carlo results [17], the line represents our work with parameters
T, = 852K.



50 L. Li et al. / Microelectronics Journal 38 (2007) 4751

compare (12) to the Monte—Carlo result for u versus E'/?
[17], the comparison is shown in Fig. 6.

4. High electric field regime

With increasing electric field, the voltage drop over a
single hopping distance increases. If this voltage drop is of
the order of kgT or larger, the approximate expression (4)
for conductivity does no longer hold. The current between
the two sites depends on the chemical potential of the sites,
which in turn depends on the strength and direction of the
electric field. Therefore, a percolation model is usually
adopted, assuming site-to-site hopping currents instead of
conductance [10].

However, in this case, a conductivity model for the high
electric field regime can only be obtained after some
approximations. According to percolation theory, the
critical percolation cluster of sites would comprise a
current carrying backbone with at least one site-to-site
current equal to the threshold value. Since a steady-state
situation would prescribe a constant current throughout
the whole current carrying backbone, the charge will
redistribute itself along the path, thus changing the
chemical potentials of sites. Hapert omitted this rearrange-
ment by optimization of the current with tunneling [10].
Potentially, the redistribution of charge would change the
tunneling current, but this effect seems negligible compared
to large spread ;. As a result, the conductivity between
two sites is given by

ajj = exp(—sy) (13)
with

E
sy = 20R;+In (’27%37 R,,.). (14)

Combining (7)-(10) and (15), the following expression
for the percolation criterion is obtained:

N 8
B~ {1 YA T/Tora £ T/To)] /dR”O(S" Si)-
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This gives the conductance as
gEn
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For high electric field, the conductivity In ¢ is presented as
a function of E'? in Fig. 7. In this case, a field-saturated
drift velocity, i.e., coc E~! is observed in accordance with
the simulation work [18] and experiment [19]. At very high
fields the effective disorder seen by a migrating carrier
vanishes and backward transitions are excluded [20]. The
temperature dependence of conductivity at the electric field
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Fig. 7. Field dependence of the conductivity at different temperatures.
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Fig. 8. Temperature dependence of the conductivity at different electric
field.

of 1 x 10° V/em is presented in Fig. 8. An Arrhennius-like
temperature dependence Inooc —E,/(kg7) is also observed
at low temperature.

5. Conclusion

An analytical model to describe both the temperature
and electric field dependence of conductivity in organic
semiconductors has been derived. This model predicts the
usual T~ relationship at low electric fields and Arrhen-
nius-like temperature dependence at high electric fields.
The field-saturated drift velocity has also been observed at
high electric field.
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