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Abstract When the coupled Schrödinger-Poisson system is

solved iteratively with appropriate numerical damping, con-

vergence problems are likely to occur. We show that these

problems are due to inappropriate energy discretization for

evaluating the carrier concentration. By using an adaptive

method the self-consistent loop becomes stable, and most of

the simulations converge in a few iterations. We applied this

approach to investigate the behavior of carbon nanotube field

effect transistors.
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1. Introduction

As electronic devices shrink the carrier transport through

these devices is more affected by quantum mechanical

phenomena, implying the need for coupled Schrödinger-

Poisson solvers to analyze these devices. Non-linear coupled

systems can be solved by iteration with appropriate nu-

merical damping, which terminates if a convergence crite-

rion is satisfied [1]. However, convergence problems of the

coupled Schrödinger-Poisson system are well known [2].

Rigorous analysis of this system suggests that instabilities

are due to inappropriate energy discretization for evalu-

ating the carrier concentration. Conventionally the energy

domain is discretized on an equidistant grid to solve the

Schrödinger equation and evaluate the carrier concentration.

The disadvantage of this method is that the accuracy of the
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calculated quantity can not be predefined and in fact it is

problem-dependent. As will be shown, inaccurate carrier

concentration in the self-consistent loop causes instabilities.

By using an adaptive integration method with predefined ac-

curacy a fast and stable solver is achieved.

Exceptional electronic and mechanical properties together

with nanoscale diameter make carbon nanotubes (CNTs) can-

didates for nanoscale field effect transistors (FETs). While

early devices have shown poor device characteristics, high

performance devices were achieved recently [3–6]. In short

CNTs (less than 100 nm) the carrier transport is nearly bal-

listic [5, 7]. Depending on the work-function of the metal

contact positive, zero, or negative barrier height at the

metal-CNT interface is formed [8, 9]. The barrier height for

electrons is defined as the energy difference between the

Fermi level in the contact and the conduction band-edge of the

CNT. To investigate the behavior of CNTFETs with different

barrier heights we solve the coupled Poisson and Schrödinger

equation.

2. Approach

In order to account for the ballistic transport we solved the

coupled Poisson and Schrödinger equations for CNTFETs.

∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ
+ ∂2V

∂z2
= − Q

ε
(1)

− h̄2

2m∗
∂2�

n,p
s,d

∂z2
+ (U n,p − E)�

n,p
s,d = 0 (2)

We considered an azimuthal symmetric structure, in which

the gate surrounds the CNT, such that the Poisson Eq. (1)

is restricted to two-dimensions. In (1) V (ρ, z) is the elec-
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trostatic potential, and Q is the space charge density. In

the Schrödinger Eq. (2) the effective mass is assumed to

be m∗ = 0.05m0 for both electrons and holes [10]. In (2)

superscripts denote the type of the carriers. Subscripts de-

note the contacts, where s stands for the source contact and

d for the drain contact. For example, �n
s is the wave function

associated with electrons that have been injected from the

source contact, and U n is the potential energy that is seen by

electrons. The Schrödinger equation is just solved on the sur-

face of the tube, and is restricted to one-dimension because

of azimuthal symmetry. The space charge density in (1) is

calculated as:

Q = q(p − n)δ(ρ − ρcnt )

2πρcnt
(3)

where q is the electron charge, and n and p are total elec-

tron and hole concentrations per unit length. In (3) δ/ρ is the

Dirac delta function in cylindrical coordinates, implying that

carriers were taken into account by means of a sheet charge

distributed uniformly over the surface of the CNT [11]. In-

cluding the source and drain injection components, the total

electron concentration in the CNT is calculated as:

n = 4
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where fs,d are equilibrium Fermi functions at the source

and drain contacts. All our calculations assume a CNT with

0.6 eV band gap [3]. The total hole concentration in the CNT

is calculated analogously.

The Landauer-Büttiker formula [12] is used for calculat-

ing the current:

I n,p = 4q

h

∫ [
f n,p
s (E) − f n,p

d (E)
]
T Cn,p(E)dE (5)

where TCn,p(E) are the transmission coefficients of elec-

trons and holes, respectively, through the device. The factor

4 in (4) and (5) stems from the twofold band and twofold

spin degeneracy.

The coupled Schrödinger and Poisson equation system

was solved iteratively [1], by using an appropriate numerical

damping factor α. At the (k + 1)th iteration the Schrödinger

equation is solved using the electrostatic potential V k from

the last iteration and the new space charge density Qk+1 is cal-

culated. The Poisson equation is then solved by using Qk+1

and an intermediate new electrostatic potential is calculated

V k+1
int . Finally V k+1 is calculated as:

V k+1 = αV k+1
int + (1 − α)V k (6)

where 0 < α < 1. Successive iteration continues until a

convergence criterion is satisfied. In this work an adaptive

damping factor was used [13]. The damping factor is ini-

tially set to α = 1. If the the potential update |V k+1 − V k |
increases from one iteration to the next iteration or remains

constant the the damping factor decreases by a constant

factor.

The integration in (4) is calculated within an energy in-

terval [Emin, Emax]. The interval can be simply divided into

equidistant steps and the Schrödinger equation will be solved

at these points. By using this method narrow resonances at

some energies may be missed or may not be evaluated cor-

rectly. In successive iterations as the potential profile changes

the position of the resonances will also change, and it is pos-

sible that a resonance point locates very near to one of the

energy steps. In this case the carrier concentration suddenly

changes and as a result the simulation would oscillate and not

converge. To avoid this problem the accuracy of the integra-

tion should be independent of the location of resonances. By

using an adaptive integration method the integrations in (4)

can be evaluated with a desirable accuracy. Assume f is an

integrable function, and [a, b] is the interval of integration.

To compute

I =
∫ b

a
f (x)dx (7)

adaptively I is calculated with two different integration

methods, I1 and I2. If the relative difference of the two

approximations is less than a predefined tolerance the in-

tegration is accepted, otherwise the interval [a, b] is di-

vided into two equal parts [a, c] and [c, b], where c =
(a + b)/2, and the two respective integrals are computed

independently.

I =
∫ c

a
f (x)dx +

∫ b

c
f (x)dx (8)

The same procedure is performed for each of these in-

tegrals. The advantage of this methods is that the steps

are non-equidistant, so there are many points around the

resonances while in other regions there are few points. In

this work an adaptive Simpson quadrature [14] is used. In

this method the two successive Simpson approximates are

calculated:

I1 = h

6
( f (a) + 4 f (c) + f (b)) (9)

I2 = h

12
( f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)) (10)

where d = (a + c)/2, and e = (c + b)/2. If |I1 − I2| ≤
tol × |I2| the integration is evaluated within one step
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of Romberg extrapolation: I = I2 + (I2 − I1)/15. A value

of tol > 10−2 results in an instability of the self-consistent

loop, whereas a smaller value increases the simulation time.

Our simulation results show that tol = 5 × 10−3 is an ap-

propriate value for this parameter.

Fig. 1 Sketch of the cylindrical device

3. Simulation results

To investigate adaptive and non-adaptive methods in more

detail, we performed simulations of the CNTFET shown

in Fig.1. The band-edge profile along the device is shown

in Fig. 2(a). Figure 2(b) shows the carrier concentration cal-

culated by adaptive and non-adaptive methods. By increas-

ing the number of points in the non-adaptive method, the

calculated carrier concentration becomes more accurate and

reaches the value achieved from adaptive method. The rea-

son of such large differences is the existence of narrow reso-

nances at certain energies. Figure 2(c) shows the transmission

probability of carriers through the device. The resonances re-

sult from confined states in the device, at which the carrier

concentration peaks. Figure 2(d) shows the first resonance in

more detail. Non-adaptive methods miss the proper shape of

Fig. 2 Simulation results at VG = 0.2V and VD = 0.0V . (a) Band
edge profile along the device. (b) Comparison of achieved carrier con-
centration from the adaptive and non-adaptive methods. (c) Transmis-
sion probability of carriers through the device calculated by the adap-

tive method. (d) The first resonance of the transmission probability in
more detail (the peak energy is shifted to zero). Non-adaptive methods
miss the peak while the adaptive method capture the right shape of the
resonance
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the resonance and as a result they are not able to calculate the

carrier concentration accurately. The advantage of the adap-

tive method is that the grid spacing is non-uniform and more

points are generated near the resonances. With the adaptive

method, for an accuracy of 1.0 × 10−2 about 8.5 × 102 grid

points were required, while with the non-adaptive method

even with 2.5 × 105 grid points the accuracy is not satisfac-

tory.

Inaccuracy in the calculation of the carrier concentra-

tion will lead to instabilities of the self-consistent loop.

Figure 3(a) shows the norm of the potential update after

each iteration for the adaptive and non-adaptive methods.

By increasing the number of points in the non-adaptive

method the accuracy of the calculated carrier concentration

increases and as a result the stability of the self-consistent

loop improves. But by increasing the number of points the

simulation time increases greatly (Fig. 3(b)). Compared to

the non-adaptive method, the adaptive method is more sta-

ble due to accurate quantity calculations and less CPU-

time demanding due to a relatively low total number of

points.

We applied this methodology to investigate the behav-

ior of the CNTFET shown in Fig. 1. The transfer and out-

put characteristics for devices with different barrier heights

for electrons are shown in Fig. 4(a) and (b). The ambipolar

behavior is clearly observed, especially for the device with

positive barrier heights. Geometrical changes for suppress-

ing this phenomenon is reported in [15]. Simulation results

suggest that by reducing the barrier height for one carrier

type, here for electrons, the ambipolar behavior is reduced

Fig. 3 (a) The norm of the potential update after each iteration for adaptive and non-adaptive methods. (b) The norm of the potential update versus
CPU time for adaptive and non-adaptive methods. The simulations were performed on an IBM-RS6000

Fig. 4 (a) Transfer characteristics, and (b) output characteristic of CNTFETs with different barrier heights for electrons
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and the on-current increases, which is favorable for device

characteristics.

4. Conclusions

We showed that by using an adaptive integration method the

iterative solution of the coupled Poisson and Schrödinger

system will be more stable and less CPU-time demand-

ing. We used this method to investigate the behavior of

CNTFETs with different barrier heights. Simulation studies

indicate that in order to improve the device characteristics the

barrier height for one carrier type at the metal-CNT interface

should be reduced. The implemented solver can be used for

optimization of CNTFETs.
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