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Abstract

An overview of models used for the simulation of current transport in nanoelectronic devices within the framework of TCAD appli-
cations is presented. Modern enhancements of semiclassical transport models based on microscopic theories as well as quantum-mechan-
ical methods used to describe coherent and dissipative quantum transport are specifically addressed. This comprises the incorporation of
quantum corrections and tunneling models up to dedicated quantum-mechanical simulators, and mixed approaches which are capable of
accounting for both, quantum interference and scattering. Specific TCAD requirements are discussed from an engineer’s perspective and
an outlook on future research directions is given.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The breathtaking increase in computational power and
speed of integrated circuits in the past decades has been
supported by the aggressive size reduction of semiconduc-
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tor devices. This trend is expected to continue in the com-
ing decade as predicted and institutionalized by the
International Technology Roadmap for Semiconductors
[1]. Today, when the 90 nm technology node with physical
transistor gate lengths in the range of 40 nm is in mass pro-
duction, the challenge is to introduce the 65 nm technology
node already in a year. A new technology node is intro-
duced every 3 years, with a long-term projection of the
22 nm node to be in mass production by the year 2016. A
possibility to build metal-on-insulator field-effect transis-
tors (MOSFETs) with even shorter gate lengths has been
successfully established after the 6 nm gate length transis-
tor has been demonstrated in research labs [2,3]. From a
theoretical viewpoint even a few nm gate length device
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Fig. 1. Schematic classification of approaches used in semiconductor
current transport modeling.
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has been predicted to be functional [4,5]. Nevertheless,
emerging outstanding technological challenges related to
different aspects of MOSFET fabrication and reliability
in mass production, as well as the rapidly increasing power
dissipation may slow down the so far exponential scaling of
complimentary MOSFETs (CMOS). Besides, with the
ongoing search for new technological solutions vital for
CMOS downscaling, developing conceptually new devices
and architectures is becoming increasingly important.
New nanoelectronic structures, such as carbon nanotubes,
nanowires, and molecules, are considered to be the most
prominent candidates for the post-CMOS era. Since con-
ventional MOSFETs are already operating in the sub-
100 nm range, new nanoelectronic devices are expected to
complement and substitute some of the current CMOS
functions after being integrated into CMOS technology.

Technology computer-aided design (TCAD) tools are
used to assist in development and engineering at practically
all stages ranging from process simulation to device and
circuit optimization. The main purpose of TCAD is the
technology-development related cost reduction which cur-
rently amounts to 35% and is expected to rise to 40%,
according to ITRS [6]. Due to the aggressive downscaling
of CMOS device feature sizes and newly emerging nano-
electronic devices, various shortcomings of presently
applied TCAD tools appear. These tools are frequently
based on semiclassical macroscopic transport models.
From an engineering point of view, classical models like
the drift–diffusion model, have enjoyed an amazing success
due to their relative simplicity, numerical robustness, and
the ability to perform two- and three-dimensional simula-
tions on large unstructured grids [7]. Hot-carrier effects
have motivated the development of higher-order transport
models such as the hydrodynamic, energy-transport and
six-moments models [8]. However, inaccuracies originate
from the non-local nature of carrier propagation in ultra-
scaled devices [9].

Non-local effects may be of classical or quantum-
mechanical nature, depending on the underlying physics
relevant to the transport process. Classical non-localities
appear when the mean-free path is comparable to the
device feature size. Quantum-mechanical non-local effects
start to determine the transport properties when the device
size is of the order of the De-Broglie electron wave length.
Size quantization of carrier motion in inversion layers of
MOSFETs and in ultra-scaled multi-gate devices as well
as the tunneling current, including the gate leakage current,
are the most important examples of quantum effects in
MOSFETs.

Fig. 1 shows the hierarchy and mutual interrelation of
models currently used for the description of current trans-
port. Semiclassical transport models are based on the
Boltzmann equation which includes scattering integrals
describing realistic microscopic processes. These semiclassi-
cal models, augmented with quantum corrections, are still
of great importance due to their relative computational
simplicity, numerical stability, and an ability to provide
reasonable quantitative results within seconds even for
devices with gate length as short as 50 nm. A brief overview
of the currently developed semiclassical transport models
will be presented in Section 2.

Quantum-ballistic transport models describe a coherent
propagation of carriers. They are based on the solution of
the Schrödinger equation for the wave function, supple-
mented with the corresponding boundary conditions. This
approach is efficient and provides accurate results when
carrier scattering is irrelevant and can be neglected. The
method will be illustrated in Section 3 with an example
of transport in carbon nanotubes [10].

Finally, dissipative quantum transport theory represents
the most complete description of transport, which com-
bines the coherent carrier motion between the scattering
events with coherence (or phase) breaking due to carrier
scattering. Different formalisms are currently used, based
on the Dyson equation for the non-equilibrium Green’s
functions, the Liouville/Von-Neumann equation for the
density matrix, or the Wigner transport equation. Section
4 deals with quantum transport characterized by both scat-
tering and quantization. A conclusion will summarize the
main findings and give directions for future research.

2. Semiclassical transport

After the ground-breaking work of Scharfetter and
Gummel [11], who first proposed a robust discretization
scheme for the drift–diffusion equation, computer pro-
grams like MINIMOS [12] and PISCES [13] played a pio-
neering role in numerical simulation of current transport
properties of semiconductor devices. Since then, numerous
transport models of increasing complexity have been intro-
duced. The semiclassical transport description is based
on the Boltzmann equation for the distribution of carriers
f(r,k, t) in the phase space. The Boltzmann equation
includes carriers’ scattering with phonons, impurities,
interfaces, and other scattering sources through the corre-
sponding collision integrals. Although the solution of the
Boltzmann equation can be found numerically by means
of Monte Carlo (MC) methods, TCAD models based on
moments of the distribution function are highly desirable.
Being computationally significantly less expensive than
the MC method, these higher-order moments’ methods
provide a reasonable quantitative answer for devices as
short as 50 nm within seconds. The fairly new six-moments
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model [8] based on non-Maxwellian distribution takes nat-
urally into account the hot-carrier effects such as avalanche
generation, hot carrier induced gate currents, or hot-carrier
diffusion, which typically take place in silicon-on-insulator
(SOI) floating body MOSFETs. For the purpose of calibra-
tion the full-band MC method is often accepted, since it
can precisely account for the various scattering processes
[14].

Another important development of transport models is
related to the MC methods for solving the Boltzmann equa-
tion. After the pioneering work of Kurosawa in 1966 [15],
who was the first to apply the MC method to simulate car-
rier transport in semiconductors, the significantly improved
MC method was successfully applied to transport descrip-
tion in a variety of semiconductors [16]. For electrons in sil-
icon, the most thoroughly investigated case, it is believed
that a satisfactory understanding of the band structure
and of the basic scattering mechanisms has been achieved
giving rise to a ‘‘standard model’’ [17]. Nowadays, an accu-
rate MC evaluation of carrier transport properties in inver-
sion layers is of primary importance for predicting
performance of modern CMOS bulk devices. Due to the
strong confinement of carriers in the inversion layer of bulk
MOSFETs or due to the geometric confinement in multi-
gate FETs the carrier motion is quantized in one or two
confinement directions giving rise to the formation of
subbands. One possibility to address the effect of quantum
confinement on the electron concentration is to use an effec-
tive potential. This can be achieved by a convolution of
the electrostatic potential with a Gaussian function,
which leads to a smoothing of the original potential [18–
20]. Another option is to use the self-consistent Poisson–
Schrödinger-based quantum corrected potential [21,22],
which suppresses the carrier concentration close to the
interface, mimicking the real quantum-mechanical behav-
ior. These approaches combine advantages of full-band
structure and flexibility of scattering processes of three-
dimensional classical MC simulations with the generality
of material composition and transport peculiarities due to
quantum confinement and may also address the strain
effects.

The MC approach may incorporate the quantized car-
rier motion in the direction orthogonal to the current
exactly. The quantum-mechanical motion of carriers in
the confined direction is addressed by the self-consistent
solution of the corresponding Schrödinger and Poisson
equation, leading to the formation of subbands. The carrier
motion within each subband may still be considered semi-
classical and therefore can be well described by the corre-
sponding Boltzmann equation written for the subband
distribution function fn(r,k, t). Because of possible carrier
transitions between different subbands due to scattering,
the collision integrals on the right-hand-side of the Boltz-
mann equation should include the terms responsible for
the intersubband scattering processes. The transport in
the inversion layer of a MOSFET is finally described by
a set of Boltzmann equations for every subband, coupled
to each other via the intersubband scattering integrals.
The set of the subband Boltzmann equations for fn(r,k, t)
is conveniently solved by a MC method. This approach
therefore combines the advantages of a quantum descrip-
tion in confinement direction with a semiclassical descrip-
tion in transport direction and represents a transition
between semiclassical and quantum-mechanical pictures.
An example of the simulation of the low-field surface
mobility in inversion layers of silicon, when the transport
in the current direction may be treated semiclassically, is
shown in Fig. 2, together with the experimental ‘‘universal
mobility’’ curve [23]. In order to reproduce the universal
mobility curve, up to 40 unprimed and 20 primed subbands
formed at a (10 0) silicon interface were taken into account,
with realistic electron–phonon and surface roughness scat-
tering included [24].
3. Quantum-ballistic transport

With the aggressive downscaling of MOSFET dimen-
sions continuing, the classical description of carrier motion
in transport direction is gradually losing its validity. When
the characteristic scale of the potential variation along the
channel is comparable to the De-Broglie wave length of a
carrier, a TCAD transport model must include the quantum
effects in transport direction. If scattering processes can be
ignored and particle propagation in the device is coherent,
the carrier motion is determined by the solution of the
Schrödinger equation, supplemented with open boundary
conditions. In order to determine the current density J, it
is enough to know the transmission coefficient TCðEÞ as well
as the supply function NðExÞ from the electrodes [25]:
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J ¼ 4pm�q

h3

Z Emax

Emin

TCðExÞNðExÞdEx: ð1Þ

A similar approach can also be used to determine the gate
leakage current [26]. The solution of the Schrödinger equa-
tion with open boundary conditions can be achieved by
means of the quantum transmitting boundary method
[27,28]. An established alternative framework for these cal-
culations is the non-equilibrium Green’s functions method
[29] in its reduced coherent version. It is conveniently used
for one-dimensional studies of resonant tunneling diodes or
carbon nanotubes. Simulators accounting for a full two-
dimensional solution of the open-boundary Schrödinger
equation have been reported and applied to the simulation
of 10 nm double-gate MOSFETs [30,31].

It may appear that in the quantum-ballistic case the
determination of the full wave function as a solution of
the Schrödinger equation is not necessary and the knowl-
edge of the transmission coefficient is enough for the cur-
rent calculations. In the contact block reduction method
[32] the transmission function is fully determined by the
reduced contact part of the full Green’s function. However,
the carrier concentration alters the electrostatic potential in
the device via the Poisson equation. The carrier concentra-
tion is proportional to the square of the wave function,
implying that the accurate determination of the trans-
mission coefficient and therefore the current requires a
self-consistent solution of the Schrödinger and Poisson
equation simultaneously. For quasi-one-dimensional trans-
port this can be achieved straightforwardly [4]. An example
of the output characteristics simulated for an ultra-thin
body double-gate MOSFET with a gate length L as short
as 2.5 nm is shown in Fig. 3. Surprisingly, even such a small
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device possesses an Ion/Ioff ratio sufficient for logic applica-
tions and displays a reasonable short-channel effect and
acceptable DIBL, a conclusion recently reached from more
detailed atomistic calculations [5]. It should be noted that
the sensitivity to small MOSFET dimension variations,
the control of doping as well as the whole manufacturing
process development represent significant challenges for
multi-gate MOSFETs with a gate length below 10 nm.

Self-consistent solution of the two- or three-dimensional
Schrödinger equation together with the Poisson equation
represents a significant computational challenge [30].
Two- and three-dimensional quantum-ballistic simulations
can be performed by means of an approximate separation
of the quantum motion in the confinement direction y from
the motion along the current direction x by means of the
following ansatz for the wave function Wn(y,x):

Wnðy; xÞ ¼
X

n

nnðxÞwnðy; xÞ: ð2Þ

This method allows the independent solution of the
Schrödinger equation for the subband wave function
wn(y,x) at position x. Transport in the current direction
is characterized by a system of one-dimensional Schröding-
er equations with open boundary conditions for the wave
functions nn(x). Each Schrödinger equation describes the
transport inside the particular subband. Transport in each
subband is independent from the one in other subbands, if
the subband wave functions wn(y) do not depend on the po-
sition x in transport direction. The Schrödinger equations
describing the transport in each subband are decoupled
from each other, when the potential U(x,y) in the device
is the sum of two contributions, each depending either on
y or x coordinate alone. In a general case when the sub-
band wave functions depend on the position x in transport
direction, the transport in the subbands n and m is coupled,
with the coupling described by the Hamiltonian dHnm(x).
However, when the intersubband coupling Hamiltonian
dHnm(x) is small and may be neglected, transport in the
subbands can still be considered as independent from each
other. This approximation simplifies the calculations and
reduces the computational effort significantly [33–36]. The
coupling Hamiltonian is expected to be small if the depen-
dence of the subband wave function on x is weak. An
example where the subband decomposition turns out to
be an excellent approximation is the quantum transport
in ultra-scaled SOI MOSFETs [36]. In the opposite limit
of abrupt junctions between contact reservoirs and the
channel, the intersubband coupling is expected to be the
strongest. However, even in this case the current value cal-
culated self-consistently was found to be only 10% lower as
compared to the calculations with neglected intersubband
coupling [37]. More research is needed to clarify the
situations.

The coherent quantum transport description is justified
if the size of the channel region is shorter than the phase-
breaking length. In carbon nanotubes, where elastic scat-
tering can be ignored and inelastic scattering has little effect
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on current [40], the current value can well be predicted
within the quantum-ballistic approach [10]. Similar meth-
ods can be applied to describe the output characteristics
of FinFETs in the ballistic approximation [41]. In silicon
MOSFETs, however, the mean-free path in the area close
to the potential maximum at 300 K is only a few nm [42],
and the full quantum description which includes dissipative
processes must be adopted to simulate MOSFETs with a
gate length of around 10 nm. A consistent introduction
of realistic scattering into simulators based on the coherent
description alone creates outstanding computational diffi-
culties ranging from a necessity to invert huge matrices in
NEGF formalism [29] to calculations of non-local scatter-
ing rates in Pauli master equation approaches [43]. Besides
the difficulties of introducing scattering into the simulators
based on the coherent description, these simulators are
often limited to specific geometries, grids and short-length
scales, which makes their integration into modern engineer-
ing TCAD tools problematic. Nevertheless, these simula-
tion approaches are necessary for the estimation of upper
bounds of current transport at the quantum limit.

4. Dissipative quantum transport

The methods described so far are either based on the
assumption of semiclassical or pure quantum mechanical
ballistic transport. The former modeling approach has pro-
ven to be adequate to describe transport in previous gener-
ations of microelectronic devices. The latter one may be
used for transport description when the carrier coherence
length is larger than the device size. Recent studies show
that even for devices with a channel length as short as
15 nm scattering will still play a significant role [44] and
therefore determine the current, in accordance with estima-
tions of the mean-free path in MOSFET structures [42].
The crossover from diffusive to ballistic transport in Si
nanowire transistors occurs at approximately 2 nm [45], a
much shorter distance than previously anticipated. An ade-
quate transport model for ultra-scaled MOSFETS must
therefore account for quantum-mechanical and dissipative
effects simultaneously. In modern microelectronic devices
quantum effects are usually dominant in a small active
region connected to relatively large, heavily doped contact
areas where the carrier dynamics is essentially classical.
Therefore, modern TCAD simulators should also be able
to incorporate both semiclassical and (dissipative) quan-
tum-mechanical modeling approaches within the same for-
malism. To a certain extent, various quantum corrections
can serve the purpose, as already discussed.

The non-equilibrium Green’s functions method addresses
the problem in the most consistent and complete way. Due
to its completeness, the method is computationally complex
and usually applied to one-dimensional problems [29] and
for a restricted set of scattering mechanisms [46] only. The
carbon nanotube (CNT) FET, which is widely considered
to be a potential alternative to the conventional MOSFETs,
represents a good example where the non-equilibrium
Green’s functions method provides accurate results and is
successfully used. In Fig. 4 simulated output characteristics
of a CNT-FET with ohmic contacts [38] are compared to
experimental data [39], showing good agreement.

An alternative approach which can handle both quan-
tum-mechanical and dissipative scattering effects is based
on the Wigner function formalism. Realistic scattering pro-
cesses can be easily embedded into the Wigner equation via
Boltzmann-like scattering integrals which turns out to be a
good approximation. The Wigner function approach
reduces to a semiclassical transport description in contacts
providing an important advantage of a seamless treatment
between classical and quantum-mechanical regions in
device simulations [47].

The Wigner function is given by the density matrix in
mixed representation [48,49] defined by the Wigner–Weyl
transform

fwðr;k;tÞ ¼
Z

q rþ s

2
;r� s

2
;t

� �
expð�ık � sÞds:

The kinetic equation for the Wigner function is similar to
the Boltzmann equation:

o

ot
þ v � rr

� �
fw ¼

Z
V wðr;k0 � kÞf wðk0;r;tÞdk0 þ ofw

ot

� �
coll

:

ð3Þ

The Wigner potential entering into the non-local operator
in the right-hand side is defined as

V wðr;kÞ ¼
1

ı�hð2pÞ3
Z

V r� s

2

� �
� V rþ s

2

� �� �
expð�ık � sÞds:

ð4Þ
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In case of slowly varying potentials the non-local potential
term reduces to the classical force term. Following [50], one
can introduce a spectral decomposition of the potential
profile V(x) into a slowly varying, classical component
and a rapidly changing component treated quantum-
mechanically.

V ðrÞ ¼ V clðrÞ þ V qmðrÞ: ð5Þ
The decomposition is conveniently carried out by applying
a low-pass filter with a cut-off wave number qc� p/Dx,
where Dx is a grid step size. This separation of the total po-
tential into a classical and a quantum-mechanical contribu-
tion can improve the stability of a numerical solution
method. The quantum-mechanical contribution may be
moved into the right-hand side of the transport equation
and can be interpreted as a quantum scattering integral:

o

ot
þ v � rr �

qrrV clðrÞ
�h

� rk

� �
fw

¼
Z

V qmðr;k0 � kÞf wðk0;r;tÞdk0 þ ofw

ot

� �
coll

: ð6Þ

By applying the method of moments to (6), the quantum
drift–diffusion or quantum hydrodynamic models can be
derived [51]. These models are more convenient for the
implementation in TCAD device simulators than a Schrö-
dinger–Poisson solver which strongly depends on non-local
quantities. However, it was reported that, while the carrier
concentration in the inversion layer of a MOSFET is repro-
duced correctly, the method fails to account properly for
tunneling currents [52].

The Wigner function formalism treats scattering and
quantum-mechanical effects on equal footing through the
corresponding scattering integrals. By analogy to the Monte
Carlo methods used for the Boltzmann transport equation,
it is tempting to try to solve the quantum Wigner transport
Eq. (6) by means of the MC technique. Such a program
was recently realized in [36,47,53]. However, since the ker-
nel of the quantum scattering operator is not positively
defined, the numerical weight of a particle trajectory
increases rapidly, and the numerical stability of a trajec-
tory-based Monte Carlo algorithm becomes a critical issue.
A multiple trajectories method was suggested [47] to over-
come this difficulty. In the algorithm developed, the prob-
lem of a growing statistical weight of a single trajectory is
addressed by creating an increasing number of trajectories
with constant weights, which may assume positive and neg-
ative values. Being formally equivalent to the former
method, the algorithm allows the annihilation of particles
with similar statistical properties, introducing a possibility
to control the number of trajectories.

This method was recently applied to double-gate MOS-
FETs [36]. In the coherent mode, where scattering is turned
off, a comparison to conventional Schrödinger solvers can
be performed. In order to estimate the tunneling compo-
nent of current the Wigner Monte Carlo simulations were
carried out for a MOSFET with a gate length of 10 nm.
Potential profiles were calculated self-consistently for a
drain–source voltage of 0.4 V and a gate biases ranging
from 0 V to 0.4 V using the device simulator MINIMOS-NT.

A good agreement between the two approaches is dis-
played in Fig. 5. The difference between quantum ballistic
and semiclassical simulations is due to the additional con-
tribution from electrons quantum-mechanically tunneling
through the potential barrier. The increased concentration
due to tunneling electrons is clearly seen in Fig. 6, where
the normalized concentrations calculated semiclassically
and from the Wigner equation are shown for two values
of the gate voltage. The second moment of the Wigner
function f(r,p) and the semiclassical distribution function
defined as

hEi ¼
Z

p2

2m�
f ðr;pÞdp; ð7Þ

is shown in Fig. 7. In the source electrode both quantum
and classical simulations display the value hEi = 3/2kT,
which corresponds to the average energy of carriers in-
jected with the Maxwellian distribution.

The difference in second moments of the classical ballis-
tic and the Wigner functions is most pronounced in the
area of potential maximum. Tunneling electrons formally
possess a negative energy. This leads to a substantial nega-
tive contribution to (7) and an observed decrease of the
energy moment of the Wigner function as compared to
the classical case.
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For long n–i–n structures results are similar. For short n–i–n structures
additional charge due to tunneling electrons results in significantly higher
potential barrier.
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In the drain the average energies are again similar,
although they show a higher value than those in the source.
This is expected because of the ballistic nature of both clas-
sical and quantum transport considered. Indeed, electrons
which reach the drain electrode by traveling from the chan-
nel to the drain electrode acquire sufficiently high energy
due to the applied drain–source voltage. Due to absence
of scattering, they preserve their high momenta leading to
a significant contribution to the average energy throughout
the drain area.
An important advantage of the Wigner Monte Carlo
method is that it allows to include dissipative processes
caused by scattering. It turns out that inclusion of scatter-
ing stabilizes the Wigner Monte Carlo simulations. The
carrier concentration can be used to update the potential
in the device by solving the Poisson equation. A superim-
posed iteration loop makes the Wigner–Poisson solver
self-consistent. Examples of self-consistent potentials for
n–i–n Si structures with an intrinsic region of length W

ranging from 20 nm to 2.5 nm, as calculated with Wigner
and classical Monte Carlo are shown in Fig. 8. The doping
profile is assumed to increase gradually from the intrinsic
channel to the highly doped contacts value over the same
distance W. Electron–phonon and Coulomb scattering
were included. As expected, for thick W the classical and
quantum calculations yield similar results for the self-con-
sistent potential. For W = 2.5 nm an extra space charge due
to electrons tunneling under the barrier becomes important,
which results in the potential barrier increase. Despite the
potential barrier increase, the current in self-consistent
Wigner simulations was approximately 20% higher com-
pared to its classical value found by a self-consistent solu-
tion of the Boltzmann and the Poisson equations.

The Wigner function method gives accurate results not
only for single-barrier devices, but can also be applied to
purely quantum-mechanical systems such as resonant tun-
neling diodes [47]. A typical output characteristic of a GaAs
resonant tunneling diode is shown in Fig. 9. Scattering with
polar optical phonons as well as the Coulomb scattering in
the contacts is considered. A region of negative differential
resistance common to transport via a resonant level is
clearly visible after the resonance peak at 250 mV applied
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Fig. 9. Typical IV curve of resonant tunneling diode computed with
Wigner MC self-consistently. The negative differential resistance after the
peak is characteristic for resonant structures.
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voltage. Self-consistent solution of the Wigner transport
and Poisson equation is a mandatory for the correct deter-
mination of the resonance position due to charge accumula-
tion at the cathode side of the resonant tunneling diode. A
typical distribution of the concentration in resonance condi-
tion and off-resonance is shown in Fig. 10. The amount of
charge localized in the potential well is much higher at
resonance as compared to off-resonance conditions, in
accordance with previous simulations [47]. This example
demonstrates the importance of quantum-mechanical
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Fig. 10. Normalized electron concentration off-resonance (dashed line)
and at resonance (solid line) in double barrier structure. Space charge
accumulation seen at the anode side of resonant tunneling diode results in
shift of I–V current resonant pick.
effects for simulations of properties of ultra-scaled devices.
It also shows that space charge effects are of crucial impor-
tance for the accurate prediction of output characteristics of
single- and double-barrier devices.
5. Conclusions

Well established classical TCAD tools are gradually los-
ing their ability to predict accurately the characteristics of
nanoscale devices, prompting for enhancement to meet
the engineering demands. Classical models using higher
moments are able to include the hot-carrier effects and
can closely reproduce results of the full-band Monte Carlo.
Relevant quantum corrections may be incorporated into the
Monte Carlo simulators allowing to approximately account
for some quantum phenomena.

Full quantum description is required for nanoscale
devices. Contrary to the carbon nanotubes, where the
transport properties can be predicted within the coherent
picture, a dissipative quantum description may be required
for transport calculations in ultra-scaled MOSFETs with
gate lengths ranging below 10 nm. One option is the
Wigner function approach which combines the advantages
of quantum description with the accurate scattering models
relevant for devices in the nanoscale range. All quantum-
mechanical models must be adapted for engineering appli-
cations for which timely results are often more valuable
than accurate analyses [54].
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