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Abstract Transport in single and double barrier devices is

studied using a Monte Carlo solver for the Wigner trans-

port equation. This approach allows the effects of tun-

neling and scattering to be included. Several numerical

methods have been improved to render the Wigner Monte

Carlo technique more robust, including a newly developed

particle annihilation algorithm. A self-consistent iteration

scheme with the Poisson equation was introduced. The

role of scattering and space charge effects on the electri-

cal characteristics of n-i-n nanostructures, ultra-scaled dou-

ble gate MOSFETs, and GaAs resonant tunneling diodes is

demonstrated.
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1 Introduction

As the channel length is scaled down to 30 nm, quantum

effects such as direct source-to-drain tunneling start affect-
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ing the device characteristics, and new simulation tools are

needed to adequately describe transport. At the same time

there are growing evidences that scattering still controls the

current in decananometer devices. Recent studies demon-

strate that even for devices with a channel length as short

as 15 nm scattering will play a significant role [1] and there-

fore determine the current, in accordance with estimations of

the mean-free path in MOSFET structures [2]. The crossover

from diffusive to ballistic transport in Si nanowire transistors

occurs at approximately 2 nm [3], a much shorter distance

than previously anticipated. An adequate transport model for

ultra-scaled MOSFETS must therefore account for quantum

mechanical and dissipative effects simultaneously.

A numerical model based on the Wigner function formal-

ism can handle both quantum effects and dissipation. It re-

duces to a semiclassical transport description in the contacts,

providing an important advantage of a seamless treatment

of the transition between classical and quantum-mechanical

device regions [4]. Realistic scattering processes can be eas-

ily embedded into the Wigner equation via Boltzmann-like

scattering integrals [5], which makes it attractive for realistic

device simulations.

In this work we apply the Wigner function formalism to

demonstrate the role of scattering and space charge effects

on the electrical characteristics of single and double bar-

rier devices. N-i-n structures, double gate field-effect tran-

sistors (DG FET), and resonant tunneling diodes (RTD) are

considered. Several numerical methods have been improved

to render the Wigner MC technique more robust, includ-

ing the separation of a classical force, discretization of the

Wigner potential, and a particle annihilation algorithm. A

self-consistent iteration scheme with the Poisson equation

was introduced.
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2 Wigner function method

The kinetic equation for the Wigner function fw(r, k, t) is

similar to the Boltzmann equation [6, ?]:(
∂

∂t
+ v · ∇r

)
fw

=
∫

Vw(r, k′ − k) fw(k′, r, t)dk′ +
(
∂ fw
∂t

)
coll

, (1)

The Wigner potential Vw(r, k) enters the nonlocal operator

in the right-hand side. In case of slowly varying potentials

the nonlocal operator reduces to the classical force term. Fol-

lowing [8], one can introduce a spectral decomposition of the

potential profile V (x) into a slowly varying, classical com-

ponent and a rapidly varying component treated quantum-

mechanically.

V (r) = Vcl(r) + Vqm(r). (2)

This separation of the potential into a classical and a quan-

tum mechanical contribution improves the stability of the

numerical solution method.

The Wigner function formalism treats scattering and quan-

tum mechanical effects on equal footing by using the corre-

sponding scattering integrals. By analogy to the Monte Carlo

(MC) methods used for the Boltzmann transport equation,

one would try to solve the Wigner transport Eq. (1) by means

of the MC technique. The development of MC methods for

the Wigner equation, however, is hampered by the fact that

the integral kernel is no longer positively definite, as it is in

the semi-classical case. This so-called negative sign problem

will lead to exponentially growing variances of the Markov

Chain MC method [7]. The Wigner potential operator can

also be viewed as a generation term of positive and nega-

tive numerical particles [4]. In this picture the sign problem

shows up in the avalanche of numerical particles generated.

A stable MC method can be achieved by means of a par-

ticle annihilation algorithm. To solve the sign problem an

operator splitting method was proposed in [9], where the

operator is separated into a main part allowing for a straight-

forward MC solution and a perturbation. The result of the

perturbation operator applied to the solution is stored in a

discrete form on a phase space mesh and is used in an iter-

ation scheme. Especially for larger meshes these iterations

may become prohibitively time consuming. We have devel-

oped a different strategy and construct an operator, whose

application on the solution gives a small residual. The algo-

rithm attempts to minimize the residual without iterations.

The minimization is achieved by construction: The Wigner

potential operator generates two numerical particles with op-

posite weight, whereas the initial particle state persists. Out

of this three particles two are stored on the annihilation mesh.

The particles to be stored are chosen such that the weights

in the related mesh cells are minimized. One may choose

the weight of the particle continuing the trajectory to be of

the same sign as the incoming one. This scheme conserves

current exactly.

To resolve the negative parts of the Wigner func-

tion a certain fraction of negative trajectories has to be

constructed.

3 Results

The method has been applied to double-gate MOSFETs. In

the coherent mode, where scattering is neglected, a compar-

ison to conventional Schrödinger solvers can be performed.

In order to estimate the tunneling component of current

the Wigner Monte Carlo simulations were carried out for

a MOSFET with a gate length of 10 nm. Potential profiles

were calculated self-consistently for a drain-source voltage

of 0.4 V and different gate biases using the device simulator

MINIMOS-NT. Good agreement between the two approaches

is observed, as displayed in Fig. 1. The difference between

quantum ballistic and semiclassical simulations is due to the

additional contribution from electrons tunneling through the

potential barrier.

An important advantage of the Wigner Monte Carlo

method is that it allows inclusion of dissipative scattering

processes. Scattering is introduced via the Boltzmann scat-

tering integrals specific to the system under investigation.

The inclusion of scattering stabilizes the Wigner Monte Carlo
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Fig. 1 Classical ballistic current density normalized to its value at
VG = 0.4 V and relative quantum mechanical current density obtained
with the Wigner Monte Carlo (open symbols). Symbol size shows the
statistical uncertainty for the Wigner Monte Carlo simulations. Addi-
tional source-to-drain tunneling current component is clearly visible.
Current densities found from the solution of the Schrödinger equation
with open boundary conditions are also shown
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Fig. 2 Self-consistent potential profiles calculated for n-i-n structure
with Wigner (solid lines) and Boltzmann (dashed lines) transport equa-
tions. For long n-i-n structures results are similar. For short n-i-n struc-
tures additional charge due to tunneling electrons results in higher po-
tential barrier
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Fig. 3 Relative difference between currents calculated with the Wigner
and Boltzmann Monte Carlo methods (diamonds) and calculated with
the Wigner MC for an n-i-n structure, with and without scattering in the
intrinsic region

simulations. The carrier concentration can be used to update

the potential in the device by solving the Poisson equation.

A superimposed iteration loop makes the Wigner-Poisson

solver self-consistent. An example of self-consistent poten-

tials for Si n-i-n structures with an intrinsic region of length

W ranging from 20 nm to 2.5 nm, as calculated with Wigner

and classical Monte Carlo, is shown in Fig. 2. The doping

profile is assumed to increase gradually from the intrinsic

channel to the highly doped contacts over the same distance

W . Electron-phonon and Coulomb scattering were included.

As expected, for thick W the classical and quantum calcula-

tions yield similar results for the self-consistent potential. For

W = 2.5 nm an extra space charge due to electrons tunnel-

ing under the barrier becomes important, rising the potential
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Fig. 4 Typical IV curve of RTD, calculated self-consistently (solid
line), contrasted against a non self-consistent characteristics
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Fig. 5 Normalized electron concentration off-resonance (dashed line)
and at resonance (solid line) in RTD

barrier. However, the current found with the Wigner function

method is approximately 20% higher compared to its clas-

sical value determined from a self-consistent solution of the

Boltzmann and the Poisson equations.

Relative differences between IWIG and the current IBALL

computed for a “ballistic” device with scattering inside

the intrinsic and transition regions turned off is shown in

Fig. 3. For W = 2.5 nm the relative differences in current

due to quantum effects and scattering in the barrier are still

of the order of 25% and cannot be neglected.

The Wigner function method gives accurate results not

only for single-barrier devices, but can also be applied to

purely quantum-mechanical systems such as resonant tun-

neling diodes [4]. A typical output characteristic of a GaAs

resonant tunneling diode, with and without space-charge ef-

fects taken into account, is shown in Fig. 4. Scattering with

polar optical phonons as well as Coulomb scattering in the
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contacts doped to 1018 cm−3 is considered. A region of

negative differential resistance common to transport via a

resonant level is clearly visible after the resonance peak at

250 mV applied voltage. A self-consistent solution of the

Wigner and Poisson equation is mandatory for the correct

determination of the resonance position. Before the bar-

rier, an accumulation layer forms, depending on the applied

voltage, as seen in Fig. 5. This results in a voltage shift

of the resonance peak of the I/V characteristics shown in

Fig. 4. A typical distribution of the concentration in reso-

nance condition and off-resonance is presented in Fig. 5.

The amount of charge localized in the potential well is

much higher at resonance. It leads to a potential barrier

increase and also contributes to the shift of the resonant

peak.

4 Conclusions

The Wigner function method is shown to be a comprehensive

tool to address simulation needs of emerging nanoelectronic

devices. It treats tunneling and dissipative effects on equal

footing, allowing for inclusion of realistic scattering mecha-

nisms. The method guarantees a seamless link between the

quantum region and classical contact regions making it at-

tractive for device simulations. A Monte Carlo algorithm

for solving the Wigner equation with non-positive kernel

is developed. The method is applied to single and double

barrier nanostructures. It demonstrates the importance of

both quantum-mechanical and scattering effects in emerging

nanodevices.
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