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FINITE DIFFERENCE SOLUTIONS OF THE NONLINEAR

SCHRÖDINGER EQUATION AND THEIR CONSERVATION OF

PHYSICAL QUANTITIES ∗

CLEMENS HEITZINGER† , CHRISTIAN RINGHOFER‡ , AND SIEGFRIED SELBERHERR§

Abstract. The solutions of the nonlinear Schrödinger equation are of great importance for ab
initio calculations. It can be shown that such solutions conserve a countable number of quantities, the
simplest being the local norm square conservation law. Numerical solutions of high quality, especially
for long time intervals, must necessarily obey these conservation laws. In this work we first give the
conservation laws that can be calculated by means of Lie theory and then critically compare the
quality of different finite difference methods that have been proposed in geometric integration with
respect to conservation laws. We find that finite difference schemes derived by writing the Schrö-
dinger equation as an (artificial) Hamiltonian system do not necessarily conserve important physical
quantities better than other methods.
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1. Introduction

The wave equation, or the time-dependent Schrödinger equation,

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + V0 · ψ(r, t),

describes the non-relativistic quantum mechanical properties for particles without
spin. Here a particle of mass m moves in a field represented by the potential energy
function V0. After scaling the t and r coordinates, the one-dimensional Schrödinger
equation takes the form

iut + uxx + 2uV1(t, x, u) = 0

where V1(t, x, u) denotes the potential. In the case of the Schrödinger equation with
cubic nonlinearity in one space dimension, the potential is of the form V1(t, x, u) =
|u|2 + V (t, x) where V (t, x) is an arbitrary real-valued function. Hence we consider
numerical solutions of the initial-boundary value problem

u : [0, T ] × [0, 1] → C,

∆(t, x, u) := iut + uxx + 2αu
(

|u|2 + V (t, x)
)

= 0, (1.1)

α 6= 0,

u(0, x) given,

periodic boundary conditions for x ∈ [0, 1].
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In Section 2 we calculate conservation laws by means of Lie Theory and Noether’s
Theorem [7–9]. After defining three finite difference schemes in Section 3, we discuss
the numerical results for a recurrence solution in Section 4.

2. Conservation laws

To employ Lie theory and find the conservation laws we define v := ℜu and
w := ℑu and have

ℜ∆ = −wt + vxx + 2αv
(

v2 + w2 + V (t, x)
)

,

ℑ∆ = vt + wxx + 2αw
(

v2 + w2 + V (t, x)
)

.

We can write the system as the first-order variational problem

L(u) :=

∫

L(t, x, v, w, v(1), w(1))dtdx

with the Lagrangian

L :=
wvt − vwt

2
− v2

x + w2
x

2
+ α

(

v4 + w4

2
+ v2w2 + V (v2 + w2)

)

.

Hence we find for the Euler-Lagrange equations that Ev(L) = ℜ∆ and Ew(L) = ℑ∆
where Ev and Ew are Euler operators. A vector field

v = τ(t, x, v, w)∂t + ξ(t, x, v, w)∂x + ϕ(t, x, v, w)∂v + ψ(t, x, v, w)∂w

is a variational symmetry of L(u) =
∫

Ldx iff [9]

prn(v)(L) + LDiv(τ, ξ) = 0. (2.1)

Here Div(τ, ξ) is the total divergence Div(τ, ξ) = Dtτ +Dxξ. In order to check this
condition we use the relevantly prolonged operator

pr1(v) = τ(t, x, v, w)∂t + ξ(t, x, v, w)∂x + ϕ(t, x, v, w)∂v + ψ(t, x, v, w)∂w

+ ϕt(t, x, v, w)∂vt
+ ψt(t, x, v, w)∂wt

+ ϕx(t, x, v, w)∂vx
+ ψx(t, x, v, w)∂wx

,

with

ϕt(t, x, v, w) = Dt(ϕ− τvt − ξvx) + τvtt + ξvtx,

ψt(t, x, v, w) = Dt(ψ − τwt − ξwx) + τwtt + ξwtx,

ϕx(t, x, v, w) = Dx(ϕ− τvt − ξvx) + τvtx + ξvxx,

ψx(t, x, v, w) = Dx(ψ − τwt − ξwx) + τwtx + ξwxx,

and solve (2.1) by equating the coefficients of the derivatives of the dependent variables
to zero. We find that τ , ξ, ϕ, and ψ must satisfy the symmetry conditions

τ(t) = τ(t) arbitrary,

ξ(x) = 1
2τtx+ a(t) a(t) : R → R arbitrary,

ϕ(t, x, v, w) = − 1
4τtv + (c− x2

8 τtt − 1
2atx)w c ∈ R arbitrary,

ψ(t, x, v, w) = − 1
4τtw − (c− x2

8 τtt − 1
2atx)v,
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Physical meaning Var. symmetry Conserved density

C1 Charge, V arbitrary v1 = w∂v − v∂w P1(v1) = 1
2 |u|2

C2 Momentum, V = V (t) v2 = ∂x P1(v2) = 1
2 (vwx − wvx) = 1

2ℑ(uūx)

C3 Energy, V = V (x) v3 = ∂t P1(v3) = 1
2

(

α|u|2(|u|2 + 2V ) − |ux|2
)

Table 2.1. Variational symmetries and conserved densities. In all cases α 6= 0 is arbitrary.

and

vψt − wϕt

2α
= 2(v2 + w2 + V )(vϕ+ wψ) + (v2 + w2)(τVt + ξVx)

+
(

(v4 + w4)/2 + v2w2 + V (v2 + w2)
)

(τt + ξx).

The outside potential V (t, x) appears only in the last equation. We note that v =
w∂v−v∂w is a symmetry for arbitrary α and arbitrary outside potentials. Furthermore
v = ∂t is a symmetry provided that the outside potential is time-independent, i.e.,
Vt = 0. Similarly v = ∂x and v = t∂x − xw

2 ∂v + xv
2 ∂w are symmetries provided that

the outside potential is space-independent, i.e., Vx = 0. In both cases α 6= 0 can be
arbitrary.

Considering the case of a constant outside potential, V ∈ R, we arrive at the
symmetries

τ(t) = c3 c3 ∈ R arbitrary,

ξ(x) = c2 + c4t c2, c4 ∈ R arbitrary,

ϕ(t, x, v, w) = (c1 − 1
2c4x)w c1 ∈ R arbitrary,

ψ(t, x, v, w) = −(c1 − 1
2c4x)v

that form a four-dimensional Lie algebra. After defining vi to be the symmetry with
ci = 1 and cj = 0, j ∈ {1, 2, 3, 4}\{i}, its commutator table is

v1 v2 v3 v4

v1 0 0 0 0
v2 0 0 0 −v1

2
v3 0 0 0 0
v4 0 v1

2 0 0.

We now use Noether’s Theorem [8] to determine the conservation laws. In the case
of a first-order variational problem the components of a conservation law DivP = 0
are in general given by [9]

Pi(v) =

q
∑

α=1

ϕα

∂L

∂uα
i

+ ξiL−
q

∑

α=1

p
∑

j=1

ξjuα
j

∂L

∂uα
i

. (2.2)

In the case of an evolution equation with appropriate boundary conditions we find
that the integral

∫

Ω
P1dx of the conserved density P1 is constant with respect to time

on solutions of the pde system.
The variational symmetries and their conserved density are summarized in Ta-

ble 2.1. As for the physical interpretation, the rotation v1 = w∂v−v∂w corresponds to
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charge conservation, the translation v2 = ∂x corresponds to momentum conservation,
and the translation v3 = ∂t corresponds to energy conservation, as usual in physical
systems. It is clear from (2.2) that energy conservation arises from the symmetry
v = ∂t of an evolution equation in general.

3. Three finite difference schemes

We compare the following three finite difference schemes. The first scheme, [H],
proceeds by writing the equation as a Hamiltonian system in canonical form in a
straightforward manner [6]. The second method, [P], is based on the Ablowitz-Ladik
model and a transformation to canonical form [1, 4–6]. For the first two methods
we use the 6th order Gauß collocation method as the symplectic scheme. The third
method, [RK], is a state-of-the-art Runge-Kutta method of order 6.

3.1. Hamiltonian form. Depending on how the nonlinear term in (1) is
discretized, one can write the system in Hamiltonian form in straightforward manner
(u 7→ uk) or one arrives at the Ablowitz-Ladik model (2u 7→ uk−1 + uk+1).

Discretizing the derivatives with respect to the space variable first in an equidis-
tant manner, we obtain the equations

i
∂uk

∂t
+
uk+1 − 2uk + uk−1

∆x2
+ 2αuk

(

|uk|2 + V (t, xk)
)

= 0

in the new variables uk, k ∈ {1, . . . , N}. After splitting uk into real and imaginary
parts by uk =: vk + iwk and introducing the notation v := (v1, . . . , vN ) and w :=
(w1, . . . , wN ), we define the Hamiltonian

H(v, w) :=
1

∆x2

N
∑

k=1

(vkvk−1 − v2
k + wkwk−1 − w2

k) +
α

2

N
∑

k=1

(

v2
k + w2

k + V (t, xk)
)2

and obtain the system

(

v̇
ẇ

)

=

(

0 −I
I 0

)(

∇vH(v, w)
∇wH(v, w)

)

in canonical form.

3.2. Poisson form. We now discretize the nonlinear term using 2u 7→ uk−1 +
uk+1 and obtain

i
∂uk

∂t
+
uk+1 − 2uk + uk−1

∆x2
+ α(uk−1 + uk+1)

(

|uk|2 + V (t, xk)
)

= 0

in the new variables wk, k ∈ {1, . . . , N}. Again we split uk into real and imaginary
parts via uk =: vk + iwk and introduce the notation v := (v1, . . . , vN ) and w :=
(w1, . . . , wN ), which yields

(

v̇
ẇ

)

=

(

0 −D
D 0

)(

∇vH(v, w)
∇wH(v, w)

)

.

The entries of the diagonal matrix D are dk := 1 + α∆x2(v2
k + w2

k + V (t, xk)) and

H(v, w) :=
1

∆x2

N
∑

k=1

(vkvk−1 +wkwk−1)−
1

α∆x4

N
∑

k=1

ln
(

1+α∆x2(v2
k +w2

k +V (t, xk))
)

.

This system is a Poisson system.
The transformation to canonical form is not unique and depends on V (or gen-

erally on V1), since dk depends on the potential. However the transformation to
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canonical form should be global, i.e., it should be identical for all time steps; other-
wise poor performance for increasing time must be expected [5]. Hence we assume in
the following that V (t, x) = V (x) not depending on t.

In order to find a transformation to canonical form we employ the Darboux-Lie

Theorem [6]. We set σ(x) :=
√

ln(1+x)
x

and τ(x) :=
√

ex−1
x
.We use the transformation

pk := vkσ
(

α∆x2(v2
k + w2

k)
)

,

qk := wkσ
(

α∆x2(v2
k + w2

k)
)

with its inverse

vk = pkτ
(

α∆x2(p2
k + q2k)

)

,

wk = qkτ
(

α∆x2(p2
k + q2k)

)

.

After this transformation the system is in canonical form and the new Hamilto-
nian H in the variables p and q reads

H(p, q) =
1

∆x2

N
∑

k=1

τ
(

α∆x2(p2
k + q2k)

)

τ
(

α∆x2(p2
k−1 + q2k−1)

)

(pkpk−1 + qkqk−1)

− 1

α∆x4

N
∑

k=1

ln
(

eα∆x2(p2

k
+q2

k
) + α∆x2V (t, xk)

)

.

3.3. Runge-Kutta method of order 6. The third method, [RK], is a state-
of-the-art non-symplectic method that the symplectic schemes have to be compared
with. We use the Hamiltonian form from Section 3.1 and a first-same-as-last embed-
ded pair of explicit Runge-Kutta methods of order 6 including automatic time-step
control. Although automatic time-step control is not easily achieved with symplectic
integrators [5], it is an important feature of state-of-the-art (non-symplectic) methods.

4. Numerical results

In this section, we set V := 0 because of the restriction imposed by method [P].
First we checked the correctness of the implementations of the three methods on sev-
eral examples. The results for a square pulse initial condition are shown in Figures 4.1,
4.2, and 4.3. A time-step of ∆t := 1/50 000 was used on the interval t ∈ [0, 1/100], and
a step-size of ∆x := 1/50 was used on the interval x ∈ [0, 1]. The differences between
the three solution methods are shown in Fig. 4.4. Methods [H] and [RK] agree quite
well (the difference is 4 · 10−9 at most), whereas method [P] begins to deviate from
the other two solutions (the point-wise difference is in the range of 0.003). As seen in
the second example, the initial good agreement between methods [H] and [RK] is due
to the small time-step used here.

Recently an optical Fermi-Pasta-Ulam recurrence [3] was demonstrated experi-
mentally in an optical fiber [2, 10]. For our numerical experiments we use the initial
condition

u(0, x) := π
√

2
(

1 +
1

10
cos(πx)

)

(4.1)

and periodic boundary conditions for x ∈ [−1, 1]. In all calculations we use fixed-point
iteration—as opposed to Newton iteration—because of its empirically found better
convergence behavior for this kind of problem. The outside potential is assumed to
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Fig. 4.1. The absolute value of the solution for a square pulse initial condition.
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Fig. 4.2. The real part of the solution for a square pulse initial condition.
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Fig. 4.3. The imaginary part of the solution for a square pulse initial condition.
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Fig. 4.4. Differences between the three solutions.

be zero for this recurrent solution. We set α := 1, N := 50, ∆t := 1/2000, and
t ∈ [0, 10].
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Fig. 4.5. The absolute value of the solution for the recurrence (∆t = 1/2000).
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Fig. 4.6. The real part of the solution for the recurrence (∆t = 1/2000).
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Fig. 4.7. The imaginary part of the solution for the recurrence (∆t = 1/2000).
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Fig. 4.8. Differences between the three solutions (∆t = 1/2000).

Figures 4.5, 4.6, and 4.7 show the solutions obtained by the three methods.
Method [P] shows recurrent behavior, whereas methods [H] and [RK] show “ran-
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Fig. 4.9. The time evolution of the conservation laws C1 (charge conservation), C2 (momentum
conservation), and C3 (energy conservation) for method [H] (∆t = 1/2000). (a) shows the relative
changes of C1(t) and C3(t) compared to the initial value, and (b) shows the absolute change in C2(t)
which is zero initially.
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Fig. 4.10. The time evolution of the three conservation laws for method [P] (∆t = 1/2000).
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Fig. 4.11. The time evolution of the three conservation laws for method [RK] (∆t = 1/2000).

dom” behavior after t ≈ 6 and t ≈ 4, respectively. Fig. 4.8 shows the differences
between the three solutions. It is noted that up to t ≈ 2, methods [H] and [RK] agree
well.
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Method [H] Method [P] Method [RK]

Charge: ∆C1 ≈ 5.186 26 · 10−4 ≈ 1.100 87 · 100 ≈ 3.417 66 · 10−2

Momentum: ∆C2 ≈ 8.212 09 · 10+1 ≈ 6.989 45 · 10−12 ≈ 9.982 99 · 10+1

Energy: ∆C3 ≈ 1.029 75 · 100 ≈ 2.935 06 · 10+2 ≈ 7.748 59 · 10+1

Table 4.1. Summary of the deviations of the conservation properties for all three methods.

The time evolution of the conservation laws C1, C2, and C3 on the interval t ∈
[0, 10] for all three solutions is shown in Figures 4.9, 4.10, and 4.11. In the cases of C1

and C2, the relative changes with respect to the initial value are plotted, and in the
case of C3 the absolute change is depicted. It is noted that both methods [H] and
[RK] conserve C1 well. Starting at t ≈ 5, [H] and [RK] do not conserve C3 any more:
while the relative deviation of method [H] is ≈ 0.25%, the deviation of method [RK]
is much larger. Regarding C2, methods [H] and [RK] conserve C2 up to t ≈ 2 and
show a large, oscillating deviation afterwards. This behavior is consistent with the
difference between the two methods shown in Fig. 4.8(b), where both solutions agree
well until t ≈ 2. Interestingly enough, method [H], a symplectic method, and method
[RK], a non-symplectic one, show qualitatively very similar behavior regarding the
conservation laws.

The situation for method [P] is very different from the other two methods. There
are fluctuations in the relative values of C1 up to ≈ 5% where C1 is too large and fluc-
tuations in the relative values of C3 with many peaks over 10% and one peak reaching
70%. These fluctuations start immediately. At the same time, the absolute deviation
of C2 is less than 2 · 10−12. Thus C2 here is the only quantity of all three methods
that is preserved to almost round-off accuracy. Considering all three conservation
laws, method [P] is not advantageous compared to the other two methods.

Table 4.1 summarizes the results of the numerical experiments. The columns in
this table contain an approximation of

∆Cj := max
t∈[0,tmax]

∫

Cj(x)dx− min
t∈[0,tmax]

∫

Cj(x)dx.

It is seen that each of the three methods obeys one conservation law well (nearly
exactly in the case of C2 by [P]), but fails on the rest of the conservation laws.

5. Conclusion

Interpreting the numerical results, we observe the following. Although method [P]
is the most advanced method from a theoretical point of view, its conservation prop-
erties are not better than those of the other two methods. Probability and energy are
not conserved by [P] and oscillations start immediately; on the other hand, momen-
tum is conserved. The error in energy conservation reaches more than 70% at one
point (cf. Fig. 4.10). A serious disadvantage of method [P] is that it cannot be applied
to soliton solutions, because this would imply a division by zero (see the derivation
of the scheme in Section 3.2).

Methods [H] and [RK] yield comparable results. Both methods conserve all three
quantities reasonably well up to t ≈ 2. Interestingly, methods [H] and [RK], i.e.,
a symplectic and a non-symplectic scheme, exhibit qualitatively similar behavior,
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although the drift in energy is more pronounced for [RK] as time progresses. In our
implementation, [RK] works much faster than [H], and [P] is the slowest method.

Tracking the conservation laws is a good way of assessing the numerical quality of
a solution. It is found that a fd scheme derived by writing the Schrödinger equation as
an (artificial) Hamiltonian system does not necessarily conserve important (physical)
quantities better than other methods; in fact, this scheme performs worst in the sense
that oscillations start immediately. This is due to the fact that the Hamiltonian form
is arbitrary. Although the Hamiltonian is conserved by the symplectic integrators,
other physical quantities are not necessarily conserved and the Hamiltonian does not
generally carry a physical meaning in contrast to the conservation laws derived by Lie
theory.
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