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Coherent transport in mesoscopic devices is well described by the Schrödinger equation
supplemented by open boundary conditions. When electronic devices are operated at
room temperature, however, a realistic transport model needs to include carrier scatter-
ing. In this work the kinetic equation for the Wigner function is employed as a model
for dissipative quantum transport. Carrier scattering is treated in an approximate man-
ner through a Boltzmann collision operator. A Monte Carlo technique for the solution
of this kinetic equation has been developed, based on an interpretation of the Wigner
potential operator as a generation term for numerical particles. Including a multi-valley
semiconductor model and a self-consistent iteration scheme, the described Monte Carlo
simulator can be used for routine device simulations. Applications to single barrier and
double barrier structures are presented. The limitations of the numerical Wigner function
approach are discussed.
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1. Introduction

For FETs with gate lengths below 10 nm quantum effects such as direct source-to-

drain tunneling become important and start affecting the device characteristics1.

Recent studies show that scattering will still affect the current2 and that the tran-

sition to ballistic transport appears at much shorter gate lengths than previously

anticipated3. An accurate theory of MOSFETs near the scaling limit must therefore

account for the interplay between coherent quantum effects and dissipative scatter-

ing effects. This mixed transport regime can suitably be treated by the Wigner equa-

tion. Early numerical solutions of the Wigner equation were obtained using finite

difference methods, assuming simplified scattering models based on the relaxation

time approximation4. However, for realistic device simulation more comprehensive

scattering models are required. With the advent of Monte Carlo (MC) methods for

the Wigner equation5,6 it became feasible to include the full Boltzmann collision

operator. The development of MC methods for the Wigner equation, however, is
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hampered by the fact that, as opposed to the semi-classical case, the integral kernel

is no longer positive. This so-called negative sign problem will lead to exponentially

growing variances of the Markov Chain MC method. The Wigner potential operator

can also be viewed as a generation term of positive and negative numerical particles.

In this picture the sign problem shows up in the avalanche of numerical particles

generated. A stable MC method can only be achieved by means of a suitable particle

annihilation algorithm.

2. The Physical Model

Quantum transport is modeled by a time-independent, one-electron Wigner equa-

tion for a multi-valley semiconductor. The set of Wigner equations is coupled

through the inter-valley phonon scattering terms.
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This equation determines the Wigner function fv for valley v. A valley’s energy

dispersion relation ǫv(k) is assumed to be anisotropic and parabolic, resulting in a

local diffusion term, ∇kǫv·∇rf . Note that a non-parabolic ǫ(k) relation in the single-

electron Hamiltonian would give a non-local diffusion term of the form
∫
ǫ̂(k, r −

r′)fv(k, r
′)d3r′.

A spectral decomposition of the potential profile V (r) is applied7. The slowly

varying component gives the classical force F , whereas the rapidly varying compo-

nent is taken into account through the Wigner potential Vw.

V (r) = Vcl(r) + Vqm(r) (2)

F (r) = −∇Vcl(r) (3)

Vw(q, r) =
1

i~

∫ [
Vqm

(
r +

s

2

)
− Vqm

(
r −

s

2

)]
e−iq·r d3s

(2π)3
(4)

In (1) scattering is treated semi-classically through a Boltzmann collision op-

erator, where the transition rate Svv′(k,k′) from initial state (v′,k′) to final state

(v,k) is given by Fermi’s golden rule. It should be noted that usage of the Boltz-

mann collision operator in the Wigner equation represents some ad hoc assump-

tion. A rigorous treatment of electron-phonon scattering would require a frequency-

dependent Wigner function, f(k, r, ω). It is related to the non-equilibrium Green’s
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function G< by G<(r,k, ω) = if(k, r, ω) and can reasonably be approximated as8

f(k, r, ω) = fw(k, r)A(r,k, ω). To arrive at Fermi’s golden rule the spectral func-

tion A is reduced to the Dirac δ-function.

Furthermore, in (1) the Pauli blocking factor the equilibrium Fermi function f0
v

is used. The assumption of a Boltzmann collision operator in (1) ensures that in the

semiclassical regions, such as the highly doped contact regions, the conductivity is

finite and that the mean energy increase due to degeneracy is taken into account.

3. Numerical Methods

To solve (1) numerically, a stationary Monte Carlo method has been proposed, based

on the interpretation of the potential operator Θ[fw] =
∫
Vw(k − k

′)fw(k′, r)d3k′

as a generation term of numerical particles5. The mass conservation property of

the potential operator can be exactly satisfied by the numerical particle model if

one generates the numerical particles only pair-wise, for instance, with statistical

weights +1 and −1. A suitable annihilation algorithm for numerical particles needs

to be introduced in order to achieve a stable Monte Carlo method. Since one can

devise various algorithms for particle generation and, in particular, for particle

annihilation, in the following the latest developments are described.

3.1. Particle Generation

A direct numerical representation of the Wigner potential Vw(q, r) would require

the discretization of both momentum and space coordinates. The problem can be

simplified by expressing the Wigner potential in terms of V̂ (q), the Fourier trans-

form of the potential Vqm(r). The potential operator can be rewritten as follows.

Θw[fw](k, r) =
1

~

∫
|V̂ (q)| sin

[
ϕ(q) + q · r

]

×
(
fw

(
k −

q

2
, r, t

)
− fw

(
k +

q

2
, r, t

)) d3q

(2π)3
(5)

An advantage of this formulation is that no discretization of the spatial variable r is

needed. The expression can be evaluated at the actual position r of a particle. Only

the momentum variable q needs to be discretized in order to numerically represent

|V̂ |, the modulus, and ϕ, the phase of V̂ .

The structure of (5) suggests the usage of a rejection technique. As a normal-

ization quantity one obtains an upper limit for the pair generation rate.

γmax =
1

~

∫
|V̂ (q)|

d3q

(2π)3
(6)

At a rate of γmax the free flight of a particle is interrupted to check for particle pair-

generation. From the distribution |V̂ (q)| one generates randomly the momentum

transfer q. Then the sine function is evaluated at the actual particle position r as
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Fig. 1. Current through Si n-i-n diodes as a function of the number of self-consistent iterations
with the width of the intrinsic region as a parameter.

s = sin
[
ϕ(q) + q · r

]
. With probability |s| the pair-generation event is accepted,

otherwise a self-scattering event is performed. In the former case, two particle states

are generated with momenta k1 = k−q/2 and k2 = k+q/2 and statistical weights

w1 = w0sign(s) and w2 = −w1, respectively, where w0 is the statistical weight of

the initial particle. Since (5) is local in real space, the particle pair is generated at

the position r of the initial particle.

3.2. Particle Annihilation

Different variants of the single-particle Monte Carlo method can be devised5. The

variant discussed in Ref.9 guarantees exact current conservation. The only input

parameter required is the ratio of negative and positive trajectories, which makes

the algorithm easy to control. The idea is that from the trajectory tree generated by

a particle injected at the contact only one branch is actually traced. For steady state

problems considered here a phase space mesh can be utilized, on which numerical

particles are temporarily stored. An annihilation mesh is introduced for each valley-

type. The meshes are defined in the three-dimensional phase-space, spanned by one

spatial and two momentum coordinates.

3.3. Coupling to the Poisson Equation

A self-consistent iteration scheme between Wigner MC and the Poisson equation is

implemented. The adopted scheme, which is similar to the Gummel iteration scheme

for the basic semiconductor equations10, is commonly used in classical one-particle

MC simulations11. Fig. 1 shows the iteration history of the current through a Si

n-i-n diode for different widths of the intrinsic region. Currents computed using

Wigner and classical MC show similar convergence behavior.
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Fig. 2. Normalized ballistic currents calculated classically and quantum mechanically. Results from
Wigner MC and the Schrödinger solver are in good agreement. The potential profile is obtained
from a device simulation of a 10 nm gate length DG MOSFET.

4. Results

The described MC method can be used for routine device simulations. For the

purpose of verification, the first example assumes a frozen potential profile from

a 10 nm gate length double-gate MOSFET. Fig. 2 compares the quantum ballistic

currents as obtained from a collision-less Wigner MC simulation and from a numer-

ical Schrödinger solver. Good agreement is observed. The quantum ballistic current

is higher than the classical ballistic current due to an additional contribution from

carriers tunneling through the potential barrier.

To study the effects of scattering and tunneling on the device characteristics

we consider Si n-i-n diodes with the length W of the intrinsic region ranging from

20nm down to 2.5 nm. The doping profile is assumed to increase gradually from

the intrinsic region to the highly doped contact region over the same distance W .

Three transport models are compared: Wigner equation and Boltzmann equation

with electron-phonon and ionized-impurity scattering included, yielding currents

IWIG and IBTE, respectively. The Wigner equation without scattering inside the

intrinsic and transition regions gives the current ICOH (coherent). Fig. 3 shows

that the effect of scattering reflected in the difference ICOH − IWIG decreases with

decreasing device length. However, even for W = 2.5 nm the relative difference in the

currents is still of the order of 25%, indicating that scattering cannot be neglected.

Also shown is the current difference due to tunneling, IWIG − IBTE. Clearly, this

current component rises with reduced barrier width.

5. Discussion

When using the Wigner equation for numerical simulation one should be aware of

several peculiarities inherent to that approach. This approach is useful for a certain
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Fig. 3. Relative difference between currents of an n-i-n diode calculated using different transport
models: Wigner MC with and without scattering in the intrinsic region (squares); Wigner MC and
classical MC (diamonds).

class of problems only, as briefly outlined below.

5.1. Interpretation of the Results

In many cases the quantities of interest are certain moments of the phase space

distribution and not the full distribution itself. As in the classical case, the carrier

density is given by the zeroth order moment and the current density by the first

order moment. The second order moment is an energy like quantity. Its physical

interpretation, however, is not obvious in the Wigner representation, but can be

appreciated in the wave function representation.

In terms of the density operator ˆρ(t) the carrier density is given by the diagonal

element, n(r, t) = 〈r| ρ̂(t) |r〉, where |r〉 is the single-particle position eigenstate.

With the momentum operator ~k̂ the kinetic energy is related to the diagonal

element of the operator k̂
2
ρ̂. This operator needs to be symmetrized to guarantee

real valued diagonal elements. For the symmetrized operator ~
2(k̂

2
ρ̂+ ρ̂k̂

2
)/(2m∗)

the diagonal element evaluate to12

w(r) =
∑

i

pi(Ei − V (r))|Ψi(r)|2 (7)

where ψi denote the wave functions , Ei the eigen-energies, and pi the probabilities

determining the mixed state of the system.

The energy density (7) can become negative in tunneling regions where the

energy of one or more states is below the band edge, Ei < V (r). Transformation of

(7) into the Wigner representation gives12

w(r) =

∫
~

2

2m∗

(
|k|2 −

1

4
∇2

r

)
fw(k, r, t)

d3k

(2π)3
. (8)
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Fig. 4. Mean kinetic energy of electrons (solid line) in a resonant tunneling diode calculated from
(8). In the tunneling barriers (dashed line) the mean kinetic energy is negative.

Thus, the kinetic energy density is not simply given by the second moment of the

Wigner function. A correction proportional to the second derivative of the electron

concentration is required. Fig. 4 shows the kinetic energy density of electrons and

the conduction band profile for a resonant tunneling diode.

5.2. The Bound-states Problem

For energy eigenstates, ψn(r, t) = ψn(r, 0) exp (−ǫnt/~) the density matrix is time-

independent, ρnn(r1, r2, t) = ψ∗

n(r1, 0)ψn(r2, 0). In this case the system Hamilto-

nian and the density operator commute, and the quantum Liouville equation reduces

to

i~
∂ρ̂

∂t
= [Ĥ, ρ̂] = 0 . (9)

This trivial equation, which does not contain the system Hamiltonian any longer,

cannot determine bound-state density matrix. However, any given bound-state den-

sity matrix is time-independent and will satisfy this equation.

Since the quantum Liouville equation and the Wigner equation are linked by

the Wigner-Weyl transform, similar arguments hold for the Wigner equation. It

has been shown in Ref.13 that bound states cannot be obtained from the following

Wigner equation for ballistic motion.
(
∂

∂t
+

~k

m∗
· ∇r

)
fw(k, r, t) −

∫
Vw(k − k

′, r) fw(k′, r, t) d3k′ = 0 (10)

Vw(q, r) =
1

i~

∫ {
V
(
r +

s

2

)
− V

(
r −

s

2

)}
e−iq·s d3s

(2π)3

The harmonic oscillator is an example clearly demonstrating this problem. If the po-

tential is a quadratic function of position, V (r) = m∗ω2|r|2/2, the Wigner equation
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(10) reduces to the corresponding classical Liouville equation, with F (r) = −m∗ω2r

being the classical force.
(
∂

∂t
+

~k

m∗
· ∇r +

F (r)

~
· ∇k

)
fw(k, r, t) = 0 (11)

This equation propagates an initial distribution classically. Therefore, the single

equation (10) is not completely equivalent to the Schrödinger equation. In the lit-

erature two independent solutions of this problem have been proposed.

Carruthers and Zachariasen13 start from the Schrödinger equation and derive

an adjoint Wigner equation. If this adjoint equation is considered in addition, the

usual Schrödinger eigenvalue problem can be reconstructed from the two Wigner

equations. The adjoint equation is obtained from a density matrix equation involving

the anti-commutator13, [Ĥ, ρ̂]+ = 2ǫρ̂, and takes the following form.

~
2

2m∗

(
|k|2 −

1

4
∇2

r

)
fmn(k, r) −

∫
Ṽw(k − k

′, r) fmn(k′, r) d3k′

=
ǫm + ǫn

2
fmn(k, r) (12)

Ṽw(q, r) =
1

2i~

∫ {
V
(
r +

s

2

)
+ V

(
r −

s

2

)}
e−iq·s d3s

(2π)3

The ǫn are the eigenvalues of the Hamiltonian. For m = n one obtains the bound-

state Wigner functions, which are real valued. The case m 6= n gives complex

functions. The entire set of fmn(k, r) form a complete orthonormal set for all Wigner

functions.

Tatarskii14 takes as foundation the Wigner representation of quantum mechan-

ics. The solutions of the Wigner equation have to be subjected to a necessary and

sufficient condition which selects an allowed class of Wigner distributions describ-

ing quantum-mechanical pure states. The condition can be formulated in terms of

the density matrix, obtained by the inverse Wigner-Weyl transform of the Wigner

function, as follows14.

∇r1
∇r2

ln ρ(r1, r2) = 0 (13)

ρ(r1, r2) =

∫
fw

(
k,

r1 + r2

2

)
eik·(r1−r2) d3k

(2π)3
(14)

As opposed to the adjoint equation (12), this condition is a pure mathematical one

and does not contain any information about the system Hamiltonian. When condi-

tion (13) is satisfied, one can reconstruct the wave function up to a phase factor from

the Wigner function. Furthermore, it can be shown that from the Wigner equation

(10), with an initial condition satisfying the restriction (13) on the allowable form

of pure state Winger functions, the Schrödinger equation follows14. In the case of

the harmonic oscillator, the quantization condition for the energy does not follow

from the Wigner equation, but from the supplementary condition.
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Fig. 5. Resonant tunneling structure with a quadratic potential well (a). The broadening of the
first quasi-bound state is in the 10−9eV range (b).

The fact that the Wigner equation alone cannot provide the bound-states of a

closed system has some implications on the numerical solution methods, especially

if the current through the system is determined by quasi-bound states of long life

time. In this case the energy levels have very little broadening, which indicates

that the system is almost closed. This situation is illustrated in Fig. 5 for the

example of a resonant tunneling structure with a quadratic potential barrier. The

spacing between resonance energies is constant for this potential. The first resonance

peak of the transmission probability, calculated using a Schrödinger solver, is also

shown in Fig. 5. To resolve this resonance a highly non-uniform energy grid with

extremely small spacing around the resonance peaks is needed. The discrete Fourier

transform utilized by a numerical Wigner equation solver, however, permits only

equi-distant grids in momentum space. With such a grid the resonances for the

above example cannot be resolved in practice, and the discrete Wigner equation

would be ill-conditioned. From this discussion one can conclude that a numerical

Wigner function approach is applicable only to sufficiently open systems, i.e., to

systems with not too narrow resonances.

6. Conclusion

A Monte Carlo simulator performing a self-consistent numerical solution of the

Wigner equation has been presented. Dissipation effects are included semi-classically

through the Boltzmann collision operator. Algorithms for generation and annihila-

tion of numerical particles have briefly been reviewed. The quantum Monte Carlo

method turns gradually into the classical Monte Carlo method when the potential

profile becomes smoother. Therefore, the simulation method can be used, for in-

stance, to study the gradual emergence of quantum effects when a device structure

is scaled down. While the numerical Wigner function approach can also handle the
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classical limit, it is unsuitable do describe closed quantum systems. The bound-state

problem has been theoretically discussed in detail. It has been shown that the nu-

merical Wigner function approach should only be applied to structures exhibiting

not too narrow resonances.
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