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Abstract—We present a new formulation to implement the
complex frequency shifted-perfectly matched layer (CFS–PML)
for boundary truncation in 2-D vector finite-element time-domain
method directly applied to Maxwell’s equations. It is shown that
the proposed method is highly absorptive to evanescent modes
when computing the wave interaction of elongated structures
or sharp corners. The impact of the CFS–PML parameters on
the reflection error is investigated and optimal choices of these
parameters are derived.

Index Terms—Absorbing boundary conditions (ABC), finite-
element time-domain (FETD) method, Maxwell’s equations,
perfectly matched layer (PML).

I. INTRODUCTION

THE perfectly matched layer (PML) introduced by
Bérenger [1] is widely accepted as an efficient numerical

absorber used in time-domain electromagnetic solvers. PMLs
are often used to implement absorbing boundary conditions
(ABCs) in the finite-difference time-domain (FDTD) [1]–[3]
and finite-element frequency-domain (FEFD) [4], [5] methods
for simulating open-region wave propagation problems. Re-
cently, a PML scheme to truncate finite-element time-domain
(FETD) meshes for analyzing 2-D [6] and generally for 3-D
[7], [8] open-region electromagnetic scattering and radiation
problems has been developed.

Beérenger was first to propose the PML in a split-field formu-
lation for the FDTD method [1]. Different variants were subse-
quently proposed. Among them, we can state stretched coordi-
nate PML [2], anisotropic-medium (uniaxial) (U)PML [3], [4]
and complex-frequency shifted (CFS)-PML [9]. None of these
variants require field-splitting and hence have a more appealing
physical interpretation. Moreover, they are suitable for finite el-
ement applications because they only detail the insertion of new
constitutive tensors inside the PML region while keeping the
basic form of the Maxwell equations invariant.

To the best of the authors’ knowledge, all of the published
papers have implemented the PML for the FETD solution of
the vector wave equation. In this letter we introduce the PML
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implementation for the FETD method applied directly to the
Maxwell equations. Moreover, instead of using UPML, we use
the CFS–PML formulation to improve attenuation of evanes-
cent waves in the simulated structure. The effectiveness of the
proposed method is studied as a function of the constitutive pa-
rameters of the CFS–PML. Furthermore, the optimized param-
eters are extracted for FETD method. A numerical example is
considered to show the lower reflection errors obtained by our
implementation compared to the conventional PML implemen-
tation for FETD method.

II. FORMULATION

This section describes the FETD formulation of the
CFS–PML for analyzing 2-D open-region radiation elec-
tromagnetics problems. Throughout, all fields are assumed to
be polarized; the proposed scheme, however, can also be
applied to problems with minor modifications. Moreover,
the method can be easily extended to 3-D problems. Here we
consider the PML formulation in the stretched coordinate space
[5] for the 2-D problem. Inside the PML, the fields and

satisfy the following modified Maxwell’s equations in the
frequency domain

(1)

where is the electric field and
is the magnetic flux density in the frequency domain,

is a tensor given in Cartesian coordinate by
and , are

the stretched-coordinate metrics which are defined as

(2)

In the above equation, is the conductivity, is assumed
to be positive real, and is real and 1. We assume that these
PML parameters are constant in each element of the FE method.
The original form of PML [1] corresponds to 1 and 0,
which have been used in [6]–[8]. However, the above CFS form
has been shown to have superior properties, particularly for the
absorption of evanescent waves.

Transformation of (1) to the time domain using the conven-
tion leads to the equations

(3)
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where stands for the convolution. The elements of are
given by the Fourier transforms

(4)

In (4), is the unit impulse function, and is the unit
step function.

In order to obtain the finite element (FE) solution, the ex-
amined 2-D domain in the -plane is assumed to be dis-
cretized by a FE mesh composed by triangular elements and

edges. In each point of the element, , the electric field
and the magnetic flux density are approximated by edge

elements and facet elements, respectively, as

(5)

where is the electric field circulation along the th edge,
is the flux of the magnetic flux density through th face,

is the Whitney 1-form vector basis function associated to
the th edge, and is the Whitney 2-form vector basis function
associated to the th face [10] such that

(6)

To seek the FETD solution of (3) we employ Galerkin’s
method and use the perfectly electric conducting wall to ter-
minate the PML. By substituting (5) into (3) we obtain the
following ordinary differential equations:

(7)

where the matrices are given by

(8)

Fig. 1. Current element J radiating in an elongated FETD grid terminated by
CFS–PML.

and and are vectors whose elements can be expressed as

(9)

In (9), the convolution can be recursively evaluated as [11]

(10)

The global matrices can be obtained from local matrices, and
the symbolic summation (7) is carried out easily.

III. NUMERICAL RESULTS

The proposed CFS–PML implementation for the FETD solu-
tion of the Maxwell equations is tested on the following example
and optimized PML parameters are obtained. This example is
designed to measure the reflection from the CFS–PML for ap-
proximately tangential incidence. Fig. 1 illustrates the simulated
problem involving a current source radiating -polarized
waves in an elongated FETD grid. The excitation has the form
of a modulated Gaussian pulse. The center frequency and band-
width of the excitation current are 6 10 Hz and ,
respectively. The reflection error in the electric field is computed
at point A (0.78 mm from the source) and point B (1.1 mm from
the source). A reference solution is obtained by setting the ends
sufficiently far. The computational domain is discretized by uni-
form triangular elements with 5.2 10 mm.
The PML region has a thickness of 3.64 10 mm and is
terminated by a perfectly electric wall. The profiles of the PML
parameters ( and ) are determined by the following:

(11)

where is the location of an element center, is the profile order,
is the free space wave impedance, is the physical depth of the

PML region, and is the theoretical reflection error at normal in-
cidence. is not scaled and assumed to be constant. As already
stated in Section II, the PML parameters are constant in each ele-
ment and vary from element to element in the PML region.
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Fig. 2. Maximum reflection error at points A and B due to a polynomial-scaled
CFS–PML versus �ln(R). Parameters � = 1, � = 0 and m = 4.

Fig. 3. Contour plots of the maximum reflection error in dB versus � and
� =� for a polynomial-scaled CFS–PML at point B for � = 0.

The design of an effective PML region requires balancing the
theoretical reflection error and the numerical discretization
error. In other words, the optimal values for , , and

should be chosen. We have found that 3 4 to be nearly
optimal for this example and some other FETD simulations. To
choose the optimal value for we need to determine . Fig. 2
shows the maximum reflection error recorded at the observation
points asa fuction of .As it can be seen, an optimal choice
for , called , is reached when . We now note
that the radiation due to the current source is characterized by a
wide spectrum of waves containing evanescent as well as propa-
gating modes. However, the evanescent modes are not absorbed
by the PML when 1. Increasing should help this situation.
To investigate this possibility, Fig. 3 plots contours of the max-
imum reflection error at point B as a function of and

. As expected, this figure shows that increasing leads
to a decrease of the reflection error at point B. It is instructive to
observe the improvement of the maximum reflection error as a
function of for the complex frequency shifted formulation of
PML. Fig. 4 illustrates contour plots of the reflection error versus

and with . It is demonstrated here that
the maximum error with 0 is about 34 dB. With 1.95,
the error is reduced, and is about 41 dB. This is almost a
10 dB improvement over the traditional PML.

Fig. 4. Contour plots of the maximum reflection error in dB versus � and
� =� for a polynomial-scaled CFS–PML at point B for � = 1.95.

IV. CONCLUSION

We have described a new CFS–PML implementation for the
FETD solution of the Maxwell equations. Moreover, the op-
timum choices of the CFS–PML parameters have been derived.
It was demonstrated that the CFS form of the stretched-coordi-
nate variables enhances its ability to absorb evanescent waves.
A maximum reflection error of about 41 dB was recorded
for the example, compared to 34 dB for the traditional PML
formulation.
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