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Abstract—In this paper, two implicit finite-element time-domain
(FETD) solutions of the Maxwell equations are presented. The first
time-dependent formulation employs a time-integration method
based on the alternating-direction implicit (ADI) method. The
ADI method is directly applied to the time-dependent Maxwell
curl equations in order to obtain an unconditionally stable FETD
approach, unlike the conventional FETD method, which is condi-
tionally stable. A numerical formulation for the 3-D ADI-FETD
method is presented. For stability analysis of the proposed method,
the amplification matrix is derived. Investigation of the proposed
method formulation shows that it does not generally lead to a
tri-diagonal system of equations. Therefore, the Crank-Nicolson
FETD method is introduced as another alternative in order
to obtain an unconditionally stable method. Numerical results
are presented to demonstrate the effectiveness of the proposed
methods and are compared to those obtained using the conven-
tional FETD method.

Index Terms—Alternating-direction implicit (ADI) technique,
Crank—Nicolson (CN) method, finite-element time-domain (FETD)
method, instability, Maxwell’s equations, unconditional stability.

1. INTRODUCTION

VER THE past few years, considerable attention has

been devoted to time-domain numerical methods to solve
Maxwell’s equations for the analysis of transient problems.
Due to their potential to generate wideband data and model
nonlinear materials, numerical simulation schemes for sim-
ulating electromagnetic transients have grown increasingly
popular in recent years. Several methods can be used to calcu-
late the time-domain solution of electromagnetic problems. The
well-known one is the finite-difference time-domain (FDTD)
algorithm, introduced by Yee in 1966 [1]. The FDTD method
discretizes the time-dependent Maxwell curl equations using
central differences in time and space and a leap-frog explicit
scheme for time integration. Its principal advantage is ease
of implementation. However, this method suffers from the
well-known staircase problem, and its removal requires much
more effort in the sacrifice of computational resources. The
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finite-element time-domain (FETD) method combines the
advantages of a time-domain technique and the versatility of
its spatial discretization procedure [2]. In contrast, the FETD
method can easily handle both complex geometry and inho-
mogeneous media, which cannot be achieved by the FDTD
scheme.

Over the past few years, a variety of FETD methods have
been proposed [2]-[18]. These schemes fall into two categories.
One directly discretizes Maxwell’s equations, which typically
results in an explicit finite-difference-like leap-frog scheme.
These approaches are conditionally stable [4]—[8]. The other
discretizes the second-order vector wave equation, also known
as the curl—curl equation, obtained by eliminating one of the
field variables from Maxwell’s equations [9]-[18]. These
solvers can be formulated to be unconditionally stable [9]-[13]
or conditionally stable [14]-[18]. In an unconditionally stable
scheme, the time step is not constrained by a stability criterion.
However, it is limited by the required numerical accuracy in
implementing the time derivatives of the electromagnetic fields.
Therefore, if the minimum cell size in the computational do-
main is required to be much smaller than the wavelength, these
schemes can be more efficient in terms of computer resources
such as CPU time.

In some simulations using the FETD method, it is preferred
that the first-order Maxwell equations are directly considered
and solved. For instance, implementation of the complex
frequency shifted perfectly matched layer in open-region
electromagnetic problems, which has better performance than
the conventional perfectly matched layer, is easier and more
efficient when directly applied to Maxwell’s curl equations
[19]. However, the unconditionally stable methods for the
FETD solution of the second-order vector wave equation are
usually used. In this paper, we introduce two unconditionally
stable vector FETD methods based on the alternating-direction
implicit (ADI) and Crank—Nicolson (CN) schemes to directly
solving first-order Maxwell’s equations. The ADI technique
was first introduced to solve Maxwell’s curl equations using
the finite-difference method. This algorithm is called the
alternating-direction implicit finite-difference time-domain
(ADI-FDTD) method [20], [21]. We previously applied the
ADI-FETD method for solving the 2-D TE wave [22]. In this
paper, we extend this approach to the 3-D wave and introduce
the 3-D ADI-FETD method. Moreover, another alternative for
time discretization to obtain an unconditionally stable method
for the FETD solution of the Maxwell equations based on
the CN scheme is presented. It will be shown that the ADI
method can be considered as a perturbation of the implicit CN
formulation.
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ADI and CN schemes involve solving a linear system at each
time step. When the ADI scheme is applied to a standard FDTD
approach, the matrices are well structured and it renders a linear
system that is only semi-implicit and easy to solve. That is, it
leads to a 1-D solution of a tri-diagonal system of equations
that must be factorized at each time step. However, this is nei-
ther the case for the ADI scheme, nor for the CN scheme with
a finite-element approach. They lead to a fully implicit system.
Several lumping techniques have been proposed in order to ob-
tain explicit schemes without solving a linear system at each
time step [14], [23]-[25]. Moreover, a recently developed ap-
proach avoids lumping altogether by constructing a set of or-
thogonal vector basis functions that yield a diagonal mass ma-
trix [26], [27]. A most recent explicit FETD method, which is
fundamentally different from traditional explicit FETD formu-
lations for solving Maxwell’s equations, has been introduced
[28]. This new explicit FETD is derived from a recently devel-
oped FETD decomposition algorithm [29] by extending domain
decomposition to the element level. With the element-level de-
composition, no global system matrix has to be assembled and
solved as required in the implicit FETD, and each element is re-
lated to its neighboring elements in an explicit manner.

Here, we explain the details of numerical formulations of the
ADI- and CN-FETD solutions of the 3-D Maxwell equations.
Moreover, some numerical results are provided to validate the
proposed methods. This paper is organized in the following
manner. In Section II, the essential principle of the ADI scheme
for time discretization of time-dependent partial differential
equations is presented. Section III describes the formulations
of the proposed 3-D ADI-FETD method. Section IV presents
and investigates the stability condition of the conventional and
proposed schemes. The CN-FETD method as a more accurate
unconditionally stable method is presented in Section V. In
Section VI, the numerical results are shown. Finally, conclu-
sions are presented in Section VII.

II. ADI PRINCIPLE

The ADI technique is well reported in the study of parabolic
equations with finite elements [30]-[32]. In this paper, we use
this technique to solve Maxwell’s curl equations and the contri-
bution is relevant to wave propagation (hyperbolic equations).
The ADI technique takes its name from breaking up a single
implicit time step into two half time steps. In the first half time
step, an implicit evaluation is applied to one dimension and an
explicit evaluation is applied to the other, assuming two dimen-
sions in the problem statement. For the second half time step,
the implicit and explicit evaluations are alternated, or switched,
between the two dimensions. The dimensions to alternate be-
tween are typically spatial; however, temporal variables can also
be used [33].

For explanation of the ADI method as a technique for the de-
velopment of an implicit integration scheme, the time-depen-
dent curl vector equations of Maxwell’s equations are consid-
ered

OB

E= -2

V x 5
VXE—aD-i-J. (1)

ot

1323

These equations can be cast into six scalar partial differential
equations in Cartesian coordinates. We consider the following
scalar equation from the above given system:

OH. 1 (0B, 0B,
ot u\ Oy or )’

@

By applying the ADI principle, which is widely used in
solving parabolic equations [34], the computation of (2) for
the FETD solution marching from the nth time step to the
(n + 1)th time step is broken up into two computational sub-
advancements: the advancement from the nth time step to the
(n+1/2)th time step and the advancement from the (n+1/2)th
time step to the (n + 1)th time step. More specifically, the two
substeps are as follows.

1) For the first half time step, i.e., at the (n+1/2)th time step,
the first partial derivative on the right-hand side of (2), i.e.,
OFE,. /Dy, is replaced with its unknown pivotal values at the
(n + 1/2)th time step; while the second partial derivatives
on the right-hand side, i.e., 9F, /0z, is replaced with its
known values at the previous nth time step. In other words,

n4+L n+3
mtr—pgr 1 (eE)TE OET

At/2 o oy ox

2) For the second half time step, i.e., at the (n + 1)th time
step, the second term on the right-hand side, i.e., 0E, /dz,
is replaced with its unknown pivotal values at the (n+1)th
time step; while the first term, i.e., 9F, /dy, is replaced
with its known values at the previous (n+41/2)th time step.
In other words,

Hrtt — ity g [(oE't? DL+ )
At/2 o dy or ' @)
The above two substeps represent the alternations in the
FETD recursive computation directions in the sequence of the
terms, i.e., the first and second terms. They result in the implicit
formulations, as the right-hand side’s of the equations contain
the field values unknown and to be updated. The technique
is then termed “the alternating direction implicit” technique.
Attention should also be paid to the fact that no time-step
difference (or lagging) between electric and magnetic field
components is present in the formulations.
Applying the same procedure to all of the other five scalar
differential equations of Maxwell’s equations, one obtains the
complete set of the implicit formula.

III. FORMULATIONS OF THE 3-D ADI-FETD SCHEME

The ADI-FETD solution of Maxwell’s equations for ana-
lyzing full 3-D electromagnetic problems is described here. The
Maxwell curl equations governing the solution of a 3-D problem
in a lossless medium have been given by (1). In these equa-
tions, E = F,x + E,y + E.z is the electric field and B =
B,x + B,y + B.z is the magnetic flux density.

According to the ADI procedure for the time discretization,
the following equations are obtained.



1324

* (n+ (1/2))th time step

1 (Brr —pr\ 1 (oEMTE 0E)
m At/2 o Oy 0z
n l n—+s
1 (BT —Br\ 1 (oEXTT oEr
I At/2 o 0z ox
1 (B —pr\ 1 (oE)TP oEn
m At/2 o ox oy
n+i n+i n
(Em) _ufemtt amp\
At/2 m dy 0z
n+i n n+1 n
(BB 1 oB;"*  aBr _gntd
At/2 ,u 0z 0z Y
B g\ 1oyt aBr\ )
¢ At/2 m ox oy z
* (n 4+ 1)th time step
1 [ Brtt - Bt 1 (0Bl oEpt!
M At/2 T u\ oy T o

" nt
B+ — B;
At/2

Butt_ pits
A2

1
Ertl - By E

At/2

€

1
Ertl gyt
At/2

€

1
n—l—% n
0B _ aBy+1 — Jn+1
dy 0z *
< 0z ox

2 _ aB:H—l) _ Jn+1
Y

Eg+1 _ E:"‘%
At/2

€

/\/—\/\/\/—\/\
N—— S N ~—
I
==

n+3 n
_ 1(oB,"* oBr+t _ gl
oz dy #

(6)

Now we consider the finite-element solution of the above
equations. The examined 3-D domain 2 in the zyz-volume is
assumed to be discretized by a finite-element mesh composed of
N, tetrahedral elements, N, edges, and N faces. In each point
r of the element, €2°, the electric field E, and the magnetic flux
density B are approximated by edge and facet elements, respec-
tively, as

bj(H)F;(r) ™
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where ¢;(t) is the electric field circulation along the jth edge,
b;(t) is the flux of the magnetic flux density through the jth face,
W ; is the Whitney one-form vector basis function associated
to the jth edge, and F; is the Whitney two-form vector basis
function associated to the jth face [35] such that

W € H(curl; Q) = {u Vxuc [52(9)]3}
FeH(div;Q)={u:V-ueL*2)}. (8)

The Lebesgue spaces are defined by LP(2) = {f : || fllzr <
oo} where

1/p

1ller = /mwﬂ . ©)
Q

The space £2((2) is the space of all functions on domain €2 that
are square integrable, which is often referred to as the space of
functions with finite energy [36]. For vector functions, f : R3 —
R3, the corresponding space is denoted [£%(Q)]3.

For Whitney one-forms, the basis functions are well known
by now. For example, for the edge ed{mn}, where m and n are
nodes of the edge, it is

W =86 VE — & Vim (10)
where &, is the Lagrange interpolation polynomial at vertex
m [35]. Similarly, the vector basis functions for Whitney two-
forms associated with a particular facet fc{mnp}, where m, n,
and p are nodes of the face, can be written as

F = 2(6n VEn X V& + £ VE X VEm +6 VEm x VE,). (11

The Galerkin method is applied to the Maxwell curl equations
(5) and (6) using the field approximations (7). Testing the first
three scalar equations of (5) and (6) with basis function F; and
the second three with basis function W yield the following
equations in the matrix form.

* (n+ (1/2))th time step

e O (ks gyt K5 o)

At/2
oI et o - (0
(12)
* (n 4+ 1)th time step
n+l _ n+% 1

O Al (I CLERTA IO

e {e}n+l — {e}n-i—% _ e nt i e n+1

OV Ry = W0+ (s (o
—{g" ™ (13)



MOVAHHEDI et al.: ADI FORMULATION OF FETD METHOD

where the matrix entries are given by

e -1
Gij =(Fi,u” Fj)ae

(Fi, ')
://Q[,f F, - F;dQ

Kfij =(Fi, A)g-
KSU =(F;,B)o-
W, =W, x+W,y+W.z
A=Ax+Ay+A.z
Ay =p~ " (V x (W,2)) -

Ay =p~H (V x (We,%)) -
A=t (VX (W,,9))
B =B,x+ B,y + B.2
B, =p~" (V x (W)
By =p"" (V X (
B, =p! (V X (Wx X
Cf = (Wi, eWj)a-

N> <> >

g)

N>

<>

Lflzi,j :Kfz;
Lgij :KSLT]
¢ = (Wi, J)qe. (14)

For tetrahedral elements, it can be easily seen that A = B =
0.5(V x W;) so [K{] = [K5] and [L{] = [L5].

Equations (12) and (13) can be further simplified for efficient
computation. By substituting the expressions for {e}”+(1/2)
and {e}"*! presented by the second equation of (12) and (13)
into their first equations and transferring the local equations to
a global system, one obtains the following.

* (n+ (1/2))th time step

At? B natl
(161+ 2 ilier (] ) o+

= ([G] - ATt[Kl][C]l[Lz]> {b}"
- % (K1) + [Ka]) {e}" + %[Kﬂ[crl{q}“%
[C){e}t

= (O)ey + S Um0y + S i)y

_ %{q}n%, (15)
By solving the above equations, we first obtain the values
of the magnetic flux density at the (n 4 (1/2))th time step.
Thereafter, the values of the electric field can be directly
calculated using the values of {b}"+(1/2) For the second
half time step, we have the following.

* (n + 1)th time step
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[Clie)™!
=[Oy + Szt + Sy
- %M}"H- (16)

In this step, as in the previous one, the values of the mag-
netic flux density are first computed and then the values of
the electric field are computed.

IV. STABILITY ANALYSIS

In the linear theory of grid-based methods for the numerical
solution of ordinary and partial differential equations, the suc-
cess of numerical schemes is summed up in the well-known Lax
equivalence theorem [37]: “consistency and stability imply con-
vergence.” For general FETD methods, the consistency is self-
evident and assured by their formulations [2]. Subsequently,
the question of stability is of paramount importance. Here, we
present and investigate the stability condition of both conven-
tional and proposed schemes for time discretization of the fi-
nite-element method.

One of the factors that affect the performance of a com-
putational method is numerical dispersion. The proposed
finite-element method, like other grid-based methods for
solving Maxwell’s equations, such as the FDTD method [38]
and ADI-FDTD method [39], [40], exhibits numerical dis-
persion and numerical anisotropy due to the finite grid and
finite time sampling. The numerical dispersion relation for the
time-domain vector finite-element method has been derived
on a 3-D hexahedral grid [36]. Investigation of the numerical
dispersion of the ADI finite-element method will be considered
as future work.

A. Conventional FETD Scheme

In the conventional method for time discretization of the
Maxwell equations, time is discretized such that the electric
degrees of freedom will be known at whole time steps and the
magnetic degrees of freedom will be known at the half time
steps. This is often refereed to as leap-frog method. Using this
method for time discretization and following the analysis of
[41] gives the equations

[GH{B}"2 = — At[K]{e}" +[G]{b}"*

[CH{e}" ! = AtLI{b}"+= + [C){e}" (17)

where [K] = [K;] + [K>] and [L] = [L1] + [L2] = [K]¥. The
matrices [G] and [C'] are symmetric positive definite. The source
term can be neglected for the stability analysis. These equations
can be expressed in matrix form as

{a}" T = [Q] - {a}" (18)

where

=)

o ={ i |

Q] = [1-AL[CT KT G [K] - At[C] KT
—AtG) K] 1] '
19)
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The matrix [@] in (18) is called the amplification matrix of
the method. Stability of the above equation requires p([Q]) <
1, where p([Q]) is the spectral radius of [@]. A tedious, but
straightforward calculation shows that the eigenvalues of [Q)]
are given by

AEiv/4— 22

A= 5

(20)
where A = 2 — At2¢ and ¢ is an eigenvalue of the matrix
[C]7YK]T[G])L[K]. Equivalently, £ and {z} satisfy the gen-
eralized eigenvalue problem

[Cl{z} = ¢[K]T (G K {=}

The matrix [C] is symmetric positive definite and the matrix
[K]T[G]Y[K] is symmetric positive semidefinite. Thus, £ > 0
and the eigenvalues A of the amplification matrix [@)] will have
unit magnitude if and only if [36]

2
max ()

A similar bound on the time step for stability of the nonorthog-
onal grid finite-difference time-domain (NFDTD) schemes and
the generalized Yee (GY) methods was derived in [41]. In these
methods, structure of the amplification matrix is similar to the
structure of the matrix [()] for the conventional FETD scheme.

21

At <

(22)

B. Proposed ADI-FETD Scheme

For investigation of the stability condition of the proposed
FETD method, we first derive the amplification matrix of the
method. In general, (15) and (16) can be summarized as the
following matrix form:

{z}"*2 = [P){z}"

(for advancement from the nth to (n + (1/2))th time step)

(23)

{2}t = [Py {z}" 5 (24)

(for advancement from (n + (1/2))th to (n + 1)th time step).
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The matrices [P;] and [P,] have been defined as (25), shown
at the bottom of this page.

It is easy to show that [K;] = [K2] = (1/2)[K] and [L;] =
[Lo] = (1/2)[K]T. Thus, [P1] = [P3] = [P].

Combination of the above two equations reads

{z}*! = [P [P {=}" (26)

or simply

{2} = [PP{a}".

By checking the magnitude of the eigenvalues of [P]?, one
can determine whether the proposed scheme is unconditionally
stable; if the magnitudes of all the eigenvalues of [P]? are equal
to or less than unity, the proposed scheme is unconditionally
stable; otherwise it is potentially unstable [30].

Direct finding of eigenvalues of the amplification matrix ap-
pears to be very difficult. Therefore, an indirect approach can
be used with which the ranges of the eigenvalues can be de-
termined. For instance, the Schur—Cohn—Fujiwa criterion can
be applied, where the characteristic polynomial of [P]?, with
its roots being the eigenvalues, is examined [42]. This inves-
tigation and analytical proof for unconditional stability can be
considered as an open problem and will remain a topic for fu-
ture research. It is important to note that numerical results ob-
tained from many simulations show that the scheme is stable
even for large time steps. Thus, from the implementation as-
pect, the method can be considered as an unconditionally stable
scheme.

27)

V. ALTERNATIVE DESCRIPTION OF THE ADI METHOD

One of the principal advantages of the ADI-FDTD method is
that it renders a system that is only semi-implicit. That is, it leads
to a 1-D solution of a tri-diagonal system of equations that must
be factorized at each time step. Since only the 1-D problem is
being solved, the additional computational cost is significantly
reduced. As a result, there is a tendency to sacrifice accuracy of
the ADI time-integration to maintain a semi-implicit solution
procedure for the FDTD method [43]-[47]. Generally, in the
presented method (the ADI-FETD method), this process is lost

2 _
[ ] [Coeffl -1 (C — A—t[Ll][G] 1[K2]> [Coeffl]fl %[Ll] + %[Lz])
P1 = 2
~feoutts (G 1+ 1K) (oot (16]- S IRTICI )
- (Coetty)- 1<C]—A—t2[Lz][G] ) oot (Sl + S0nal) ]
P2l = At At?
—[Coeff4] 1 [K1] + [Kz] [Coeff4]~* [G]——[Kz][c] [Lo]
e (e 2i) )
M%FM+—MM¢%ﬂHMM—M+—%W]W]
2 2
(Coeffy] = [C ]+A—t[Lz][G] Ky, [Coeff41—[G1+A—*[Kz][C] L] (25)



MOVAHHEDI et al.: ADI FORMULATION OF FETD METHOD

since, for an arbitrary tessellation, the field coefficients cannot
be decoupled into Cartesian projections. Consequently, a fully
implicit procedure is resulted.

However, this is not the case with the special case of an
orthogonal Cartesian mesh (orthogonal hexahedral element) for
the finite-element method. The use of mass lumping techniques
in this situation leads to a system with well-structured matrices
[36] and, hence, the resulting linear systems can be readily
solved by using methods such as ADI-FDTD. In fact, the use
of mass lumping techniques for solving the proposed time-do-
main finite-element method with the orthogonal hexahedral
element results in a semi-implicit procedure. Moreover, the
proposed method can be more efficient than the other possible
unconditionally stable schemes in some applications such as
hybrid methods. Hybrid methods, which combine the desir-
able features of two or more different techniques, are being
developed to analyze complex electromagnetic problems that
cannot be otherwise resolved conveniently and/or accurately
by using the methods individually. One of the most efficient
hybrid methods is the finite-element finite-difference time-do-
main (FE-FDTD) hybrid method. In this method, the FDTD is
used to treat large regions with less complexities, while using
the FETD method is used to handle complex boundaries and
structures [48]-[50]. An alternative to this hybrid method is
the combination of unconditionally stable FDTD and FETD
methods. The ADI-FDTD method is always used as an uncon-
ditionally stable method for the finite-difference method. By
using the finite-element method whose time discretization is
derived from the same scheme as in the FDTD method (i.e.,
the proposed method in this paper), the overall performance of
the unconditionally stable hybrid method is improve. There-
fore, the proposed FETD method can be efficiently used in
the unconditionally stable FE-FDTD hybrid method. Another
application where the ADI scheme can be efficiently used is the
hybrid finite-element boundary-integral (FE-BI) method. This
hybrid method is a powerful numerical technique for solving
open-region electromagnetic problems [51], [52]. This method
uses an artificial boundary to divide the infinite solution domain
into interior and exterior regions in which fields are represented
using finite elements and boundary integrals, respectively. The
resulting hybrid method permits accurate and efficient anal-
ysis of complex electromagnetic phenomena, especially those
involving inhomogeneous media. In [53] and [54], it has been
shown that the ADI method is an efficient method for solving
problems with nonlocal boundary conditions (integral boundary
conditions). Therefore, the proposed method, which is based
on the ADI method, can also be efficiently implemented for the
FE-BI method.

Recent analysis shows that although the ADI scheme for time
discretization has second-order accuracy in time, the method ex-
hibits a splitting error associated with the square of the time-
step size [45]. Having an asymptotic second-order accuracy, the
splitting error becomes dominant in regions with larger spa-
tial derivatives. This can be detrimental for modeling problems
where strong near-field coupling occurs and/or structures con-
tain field singularities such as in tips and corners. It can be
shown that the ADI method applied to the Maxwell equations
is a perturbation of the implicit CN formulation [43]. The CN

1327

scheme is a well-known implicit algorithm in numerical com-
putation. The CN algorithm advances time by a full time-step
size with one marching procedure.

3-D Maxwell’s equations can be written as

ou} _
T = (Al {u} + [Bl{u}

where {u} = [E,, By, E., H,, H,, H.]T, [A], and [ B] are par-
tial derivative operators defined in [47].
Applying the CN scheme at time step n + (1/2), we get

(28)

fu}rtt —{u} 1 — "
———— = 5 (A + [AK{u))

1 (B + [B]{u)") + O(A1).
(29)

The above equation can be factorized as
At At nil
(1n- F11- 1) ()
= (4 S+ 5m1) v oan® co)
or

<+ 310) (S

One-step approximation

+ 2L A8 (0™~ (") + (a0,

€1y

v

Error=0(at)3

The “One-step approximation” can be written in two stages,
which become equivalent to the two stages of the ADI scheme
[47]. Since the ADI method solves “One-step approximation”
instead of (31) (CN method), it introduces a splitting error of
the form

AL L) ()~ ()

to the solution. The effect of this splitting error depends on three
factors, i.e.: 1) the time-step size (At? factor); 2) the spatial
derivatives of the field ([A][B] factor); and 3) the temporal vari-
ation of the field (({u}"*! — {u}™)) factor). When field varia-
tion and/or the time step size is large, the splitting error becomes
more pronounced.

To obtain the CN-FETD method formulation, the Maxwell
curl equations is projected into its weak form using the Galerkin
method and spatially discretizing using finite elements. Based
on the CN formulation for time discretization, the following
equations are derived:

(32)

(33)
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Fig. 1. Time variations of current density, /, used as an excitation for the 3-D
rectangular cavity.

where K;; = (F;,p7'V x W;)q and [L] =
(33) can be further simplified as

[K]T. Equation

([G]+A—t2[K][ - 1[L1) [y

= (1= Simperm) oy - SRl
(Clep

= (e + Smmy + ey e

As can be seen from (34), the CN formulation is very similar to
the ADI scheme for the FETD solution of Maxwell’s equations.
From Section IV, in the ADI formulation [see (15) and (16)], we
have [K1] = [K2] = (1/2)[K] and [L1] = [L2] = (1/2)[L]

VI. NUMERICAL RESULTS

Here, to validate the accuracy and stability of the proposed
3-D ADI- and CN-FETD methods, a simple example of the
excitation of a lossless 3-D rectangular cavity with perfectly
conducting walls is studied. The dimensions of the cavity are
1.0 mm x 0.5 mm X 1.5 mm. For comparative purposes, this
cavity is simulated and its resonant frequencies are obtained
with both the conventional and proposed FETD methods. In
the conventional FETD method, a leap-frog scheme is applied
for time discretization. The computation was carried out using
a mesh with tetrahedral elements. This mesh contains 27550
tetrahedra and 51710 edges, which is used for the ADI- and
CN-FETD methods and also for the conventional FETD method.
On the cavity surfaces, which are assumed to be perfectly
conducting walls since the tangential components of the electric
field is zero, we impose a homogeneous Dirichlet boundary
condition, i.e., we set to zero all the electric field circulations
associated with edges belonging to these surfaces.
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Fig. 2. Time-domain electric fields at the center of the cavity recorded with the
conventional FETD method and the proposed ADI-FETD method. (a) Conven-
tional FETD solution that becomes unstable with At = 1.05 X AtpgrpMAX-
(b) Proposed 3-D ADI-FETD solution with At = 15 X AtprrpMmax-

For each half time step, the updating of the electric and mag-
netic fields requires solving two matrix equations. The system
will be written generically as [A]{z} = {b}. Since this ma-
trix is not time dependent, it can be factorized once before the
step-by-step procedure to obtain an explicit scheme. For ma-
trix factorization, we use the direct solver in the SGI’s scien-
tific computing software library (SCSL), which turns out to be
a highly efficient direct solver. Note that the factorization is per-
formed only once and that only forward and backward substitu-
tions are needed in each time step. Noting this on (15) and (16)
shows that for forming the general matrix system [A]{z} = {b}
to update the magnetic field, the matrix [C]~! must be com-
puted. We also use the SCSL routines, which calculate the in-
verse after LU factorization, to compute the matrix inverse, di-
rectly.

The resonant frequencies can be obtained by launching a time
signal and applying the Fourier transform on the time response.
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TABLE 1
PROPOSED ADI-FETD, CN-FETD, AND CONVENTIONAL FETD SIMULATION RESULTS WITH DIFFERENT TIME STEPS
ADI-FETD CN-FETD FETD
Analytical At Resonant | Relative | Resonant | Relative | Resonant | Relative
solution frequency error frequency error frequency error
(GHz) (GHz) (%) (GHz) (%) (GHz) (%)
AtrerD 181.32 0.62 17930 | -0.49 179.01 0.66
180.20 4AtpeTD 182.01 1.00 181.70 0.83 N/A N/A
8AtrETD 184.06 2.14 183.5 1.83 N/A N/A
12AtrETD 185.41 2.89 184.9 2.60 N/A N/A
An excitation sinusoidally modulated Gaussian is used as cur- 35 T T T T T
rent density in this simulation given by |
2 3k
J = Acos(wt)exp | — t=to y (35) Unstable point
T N of FETD
& 250 —
~ |
where A = 1x 101w = 2x7x (2.1x10*),t5 = 16 x 10712, ’g !
and 7 = 5 x 107'%. Fig. 1 shows the time variations of this 8 2t |
current density. B !
T“; I —o— ADI-FETD
A. Numerical Verification of the Stability e 150 -+v--FETD
. . . o ! —e— CN-FETD
First, we investigate the stability of the proposed ADI- and !
CN-FETD methods. Simulations were run for the homogeneous 1T !
3-D rectangular cavity with both the conventional and proposed |
methods having a time step that exceeds the limit determined by 0,50 . 2 4 6 8 1-0 -
the stability condition for the conventional FETD method, i.e., Relative time step (A /A t FETDMAX)

in our case, Atpgrpymax ~ 4.1 x 1071* s. Fig. 2 shows the
electric field recorded at the center of the cavity. At = 1.05 x
AtrrrpMax was used with the conventional FETD method,
while a 15 times larger time step At = 15 X AtppTpMmax Was
used with the ADI-FETD scheme. As can be seen, the conven-
tional FETD quickly becomes unstable [see Fig. 2(a)], while the
ADI FETD remains with a stable solution [see Fig. 2(b)]. We
also extended the simulation time to a much longer period with
the proposed scheme. No instability was observed. For another
scheme, the CN-FETD method, the same large time step was
used and the stable solution was shown.

B. Numerical Accuracy Versus Time Step

Since the proposed ADI- and CN-FETD methods are shown
to be stable for very large time steps, the selection of the time
step is no longer restricted by stability, but by modeling accu-
racy. As result, it is interesting and meaningful to investigate
how the time step will affect accuracy.

For comparative purposes, both the conventional FETD
method and proposed methods were used to simulate the cavity
again. The time step Atpgrp = 4.0 X 1014 s was chosen
and fixed with the conventional FETD method, while different
values of time step At; were used with the proposed ADI- and
CN-FETD methods to check for the accuracy. Table I presents
the simulation results for the dominant mode, which is TEJy;
in the cavity. The dominant mode is determined according to
the frequency components of the excitation and its position. As
can be seen, the relative errors of the proposed unconditionally
stable methods increase with the time step, while this increment
is more for the ADI method in contrast with the CN scheme.
These errors are completely due to the modeling accuracy of
the numerical algorithm such as the numerical dispersion. The

Fig. 3. Relative errors of the conventional FETD method, proposed
ADI-FETD, and CN-FETD methods as a function of relative time step
At/Atrrrpumax. The dashed line represents the unstable point of the
conventional FETD scheme.

tradeoff to the increased errors is, however, the reduction in the
number of iterations and CPU time. By increasing the time step,
the conventional FETD solutions become unstable, while the
proposed FETD method continues to produce stable results.

Fig. 3 illustrates a plot of the errors for another excited
mode of the cavity TE7,, versus the discrete time step At
computed using the conventional FETD method and the pro-
posed ADI- and CN-FETD methods. For clarity, a relative
time-step At/AtrrrpDMAX 1S used. As can be seen, at low
At/AtrrTDMAX, the errors of both the conventional FETD
method and the proposed FETD methods are almost the same.
However, after At/Atprrpmax = 1.0, the conventional
FETD solutions diverge, while the proposed FETD methods
continue to produce stable results with increasing errors that
may or may not be acceptable depending on the applications
and users’ specifications.

VII. CONCLUSION

This paper has introduced the 3-D ADI-FETD method for
solving first-order Maxwell’s equations. Using an ADI scheme,
which is applied directly to the Maxwell curl equations for time
discretization, leads to an implicit FETD method. For stability
analysis, the amplification matrix of the proposed method was
derived, and it was shown, with numerical simulations, that an
unconditionally stable scheme is achievable. Moreover, numer-
ical simulation shows that this method is very efficient and the
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results agree very well with those of the conventional FETD
method, which uses a leap-frog scheme for time discretization.

Investigation of the ADI-FETD formulation shows that this
method, unlike the ADI-FDTD method, does not generally
lead to a tri-diagonal system of equations. Hence, we used
a CN time integration and introduced unconditionally stable
CN-FETD method. When field variation and/or the time step
size is large, the CN-FETD method becomes more accurate
than the ADI-FETD method.

Since in some electromagnetic simulations it is preferred that
the first-order Maxwell equations are directly solved, the pro-
posed unconditionally stable methods can be very efficient and
useful. They can decrease the simulation time because the time
step is no longer restricted by the numerical stability, but by the
modeling accuracy of the FETD algorithm.
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