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Abstract Two quantum-kinetic models, governing the trans-

port of an initial highly non-equilibrium carrier distribution

generated locally in a nanowire, are explored. Dissipation

processes due to phonons govern the carrier relaxation, which

at early stages of the evolution is characterized by the lack

of energy conservation in the collisions. The models are an-

alyzed and approached numerically by a backward Monte

Carlo method. The basic difference between them is in the

way of treatment of the finite collision duration time. The lat-

ter introduces quantum effects of broadening and retardation,

ultrafast spatial transfer and modification of the classical tra-

jectories, which are demonstrated in the presented simulation

results.

Keywords Wigner transport . Electron-phonon
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1 Introduction

The early time dynamics of highly non-equilibrium con-

fined carriers incorporates a number of quantum phenomena,
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which are subject of active investigations [1]. Depending on

the particular system a variety of interaction mechanisms can

influence the carrier relaxation. The electron-phonon scat-

tering processes dominate at low density regimes. The clas-

sical Boltzmann transport model adequately describes the

electron-phonon kinetics in a wide range of physical condi-

tions. However, the early stages of the evolution are beyond

the Boltzmann description: the finite duration time �c of the

collisions can not be neglected by the classical assumption for

an instantaneous scattering process. A finite �c conflicts with

another assumption of the Boltzmann picture: the scattering

process is no more local in space. The effect of non-locality

becomes important at small spatial scales characterizing the

confined systems.

The wave vector space provides a natural representation

in spatially homogeneous systems. Model equations of the

electron-phonon dynamics are developed in the framework of

Green functions [2] or density matrix [3] formalisms. Explic-

itly or implicitly these models give rise to the Levinson [4]

and/or the Barker-Ferry [5] equations. Inhomogeneous sys-

tems are described in the whole phase space. In this case, a

convenient description is provided by the Wigner formalism

which retains along with the phase space also many other

classical concepts.

We explore two Wigner function models of the early evo-

lution of carriers interacting with optical phonons in a quan-

tum wire. Quantum-kinetic effect in such systems have been

investigated within a density matrix approach [1], or with

the help of a Boltzmann-like equation, where the classical

δ function is replaced by a Lorentzian [6]. Our approach is

based on the generalized electron-phonon Wigner function

(GWF) [7]. The reduced (electron) Wigner function fw is

obtained from the diagonal with respect to the phonon coor-

dinates GWF elements. Closed equations for fw are derived
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by truncation of the coupling with the off-diagonal elements

at two different levels of approximation. The derivation will

be presented elsewhere.

2 Kinetic models

Three dimensional phonons with wave vector q′ = (q ′
z, q′

⊥)

are considered, an electric field E can be applied along the z
direction of the wire. For simplicity it is assumed that carriers

remain in a ground state �(r⊥) in the normal plane r⊥. The

obtained models are represented by the equation:(
∂

∂t
+ pz

m
∇z + eE∇pz

)
fw(z, pz, t)

=
∑

q′
⊥,p′

z

∫ t

0

dt ′{S
(

pz, p′
z, q′

⊥, t, t ′) fw
(
Z(t ′), pz

′(t ′), t ′)
− S

(
p′

z, pz, q′
⊥, t, t ′) fw

(
Z(t ′), pz(t

′), t ′)}, (1)

where

S(pz, p′
z, q′

⊥, t, t ′)

= 2|FG(q′)|2e− ∫ t
t ′ γ

((
pz +p′

z
2

)
(τ )

)
dτ

×
[

n(q′) cos

( ∫ t

t ′

(ε(pz(τ )) − ε(p′
z(τ )) − h̄ωq′ )dτ

h̄

)
+ (n(q′)+1) cos

(∫ t

t ′

(ε(pz(τ ))−ε(p′
z(τ )) + h̄ωq′ )dτ

h̄

)]
(2)

FG denotes the product of the electron-phonon coupling el-

ement F with the Fourier transform of |�|2. The models

can be considered as inhomogeneous counterparts of the

Levinson (L) and Barker-Ferry (B-F) equations, respectively.

In the former case γ = 0, in the latter γ is the common Boltz-

mann out-scattering rate:

γ (p) =
∑

q′′
2πh̄|FG(q′′)|2

× [
(n(q′′) + 1)δ

(
ε(p) − ε

(
p − h̄q ′′

z

) − h̄ωq′′
)

+ n(q′′)δ
(
ε(p) − ε

(
p + h̄q ′′

z

) + h̄ωq′′
)]

. (3)

We note the modification of the Newton’s trajectory z(t ′),
p(t ′) by the half of the phonon wave vector h̄q ′

z = pz − p′
z

along the wire:

Z(t ′) = z − 1

m

∫ t

t ′
P−

z (τ )dτ = z(t ′) + h̄q ′
z

2
(t − t ′)

(4)

P−
z (t ′) = pz − h̄q ′

z

2
− eE(t − t ′) = pz(t

′) − h̄q ′
z

2

Equation (4) manifests the nonlocal nature of the electron-

phonon interaction: the classical trajectories are generalized

by Wigner paths [8]. The basic differences between (1) and

the Boltzmann equation are introduced by the time integra-

tion on the right hand side and by the cosine function which

replaces the energy conserving δ function. The former shows

that the evolution is non-Markovian, which gives rise to ef-

fects of retardation. The lack of energy conservation causes

collisional broadening: the after-scattering energy does not

obey the classical selection rule. The interval �c = t − t ′

is identified as the collision duration time, introduced by

Bordone et al. [9]. Both models consider processes where at

t ′ half of the phonon momentum is transferred to the electron.

After �c either the other half is absorbed or the same half

is returned. The next collision initiates only after the previ-

ous one is completed. The two models differ in the way of

treatment of collisions with different duration. While in the

L case all collisions are equally treated, in the B-F case these

with long correlation times �c are damped by γ in (2).

3 Simulation results

A GaAs quantum wire with 10 nm square cross section has

been considered in the numerical experiments. The choice

of temperature T = 0 K provides a clear reference picture,

where classical carriers can only emit phonons and since the

constant POP energy form replicas of the initial distribution.

The latter is chosen to be Gaussian in both energy and space.

A backward Monte Carlo method is used to evaluate directly

the Wigner function fw and its first moments—the density

n(z) and the wave vector distribution f (kz), while t remains

implicit:

f (kz) =
∫

dz fw(z, h̄kz, t); n(z) =
∫

dpz fw(z, pz, t).

To analyze certain numerical aspects f and n are also com-

puted indirectly from the values of fw.

Figure 1 shows the time evolution of f (kz) of the two mod-

els. The classical evolution forms exact replicas of the initial

peak shifted by the phonon energy to the left. The region to

the right of the initial peak is forbidden for the classical car-

riers. The 50fs quantum distribution is very broadened, the

appearance of carriers in the classically forbidden region is

well demonstrated. At such small times the cosine function in

(2) allows scattering to practically all points in the kz domain.

With the increase of the time the kernel in (1) begins to toler-

ate processes obeying energy conservation. The first replica

of the 150fs distributions is already well pronounced but still

broadened with respect to the initial condition. The distance

between the two peaks, centered at 44 and 50 [107 m−1],

corresponds to the exact energy conservation. Two spurious
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Fig. 1 Wave vector distribution f (kz), plotted in a window of positive
kz , after 50fs and 150fs evolution time

30 35 40 45 50 55 60 65
−50

0

50

100

150

200

250

k
z
 [107/m]

f(
k z) 

[a
.u

.]

L
L direct
BF direct

Fig. 2 Broadening and retardation effects after 175fs

effects can be observed: the L distribution becomes negative

in the valley, the appearance of carriers in the forbidden re-

gion is already missing. The effects are related to the indirect

approach: the distributions are obtained from fw evaluated

in 800 × 260 z and kz points by a numerical integration on z.

The effects exist despite the high precision of computation

of fw and are associated with the fact that with the increase

of the time the Wigner function loses the initial smooth-

ness and more points are necessary for a correct quadrature

approach.

Figure 2 compares the wave vector distributions after

175fs evolution. The indirect curve becomes fairly unphysi-

cal as compared to the directly computed one. Thus a direct

evaluation of the physical observables is desirable for larger

evolution times. A comparison between the directly com-

puted L and B-F curves demonstrates the main difference

between the two models. The finite lifetime γ causes a retar-
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Fig. 3 Electron density after 175fs of evolution time presented in a
logarithmic scale

dation of the carrier evolution. The build up of the first B-F

replica evolves with a delay with respect to the L counterpart.

The spatial evolution of the carrier density is shown in

Fig. 3. The initial distribution centered at the origin splits

in two peaks, which move in the positive and the negative

directions of the wire. There are no ballistic electrons left

around the center. The quantum solutions demonstrate finite

density in the central part due to the electrons which lose

energy from the collisions. This effect is also a character-

istics of the classical model if scattering is enabled. Now

we focus on the behavior around the frontiers of the spatial

evolution. The front parts of the ballistic curve comprises

the fastest classical electrons since the latter can only lose

energy by the phonons. The L and B-F solutions show that

above and below the ballistic front, at around 230 nm and

−230 nm, respectively, there are faster quantum electrons.

The latter gained energy from the collisions and reached dis-

tances further away from the origin. This effect of ultrafast

spatial transfer has been recently reported in [1]. The retar-

dation causes only a small difference in the spatial behavior

of the two quantum models.

Finally, we explore the effect of the finite collision du-

ration on the spatial evolution of the carriers. Equation (4)

becomes equivalent to the classical trajectory z(t ′) if the term

containing �c is neglected. The density obtained from the

B-F model by replacingZ(t ′) with z(t ′) is shown with dashed

line in Fig. 4. The general effect is in the modification of the

correct carrier density. In particular, it becomes negative ex-

actly where the B-F model shows excess electron density

with respect to the ballistic curve. Thus, the neglected term

has an important role in maintaining the physical relevance

of the quantum model.

A reference to the magnitude of γ shows that few hundred

femtoseconds are needed for a good comparison of the two

models. Unfortunately the computational demands increase
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Fig. 4 Electron density after 175fs of evolution time presented in a
linear scale

exponentially with the evolution time. The currently under-

way application of GRID technologies will probably allow

to reach 300fs. Higher times need subtle algorithms or ap-

propriate approximations of the models.
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