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Abstract The band structure of Silicon under arbitrary

stress/strain conditions has been calculated using the empir-

ical non-local pseudopotential method. It is shown that the

change of the electron effective mass cannot be neglected for

general stress conditions and how this effect together with the

strain induced splitting of the conduction bands can be used

to optimize the electron mobility. The effective mass change

has been incorporated into our Monte Carlo simulator VMC

and an existing low-field mobility model.
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1 Introduction

To continue improvement of CMOS device performance,

strain techniques have become widely adopted in logic tech-

nologies starting with the 90 nm technology generation. Es-

pecially process induced uniaxial stress became established

in leading edge logic technologies, because this strain con-

dition increases mobility of both n-channel and p-channel

MOSFETs [1–3].

While the mobility enhancement in biaxially strained

Silicon has often been subject to theoretical investiga-

tions, a thorough analysis of the technologically more rel-

evant application is missing, where process-induced uniax-

ial stress is applied along the channel direction. Although
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published experimental results [4, 5] suggested a stress in-

duced modification of the electron effective mass, in Ref.

[6] a clear experimental indication of a stress-induced elec-

tron mass change �m is given for the first time. This re-

sult is surprising, because within the framework of linear

deformation potential theory [7] strain lifts the degener-

acy of the �6 conduction band valleys, but the strain in-

duced change of the electron effective mass is expected to be

negligible.

We performed band structure calculations in order to quan-

tify the observed effective mass change. The analysis starts

with the calculation of the strain tensor arising from uniaxial

stress along arbitrary directions and with the stress-induced

reduction of the crystal symmetry. Furthermore, important

details concerning the generalization of the empirical non-

local pseudopotential method (EPM) for arbitrary strain are

highlighted. The results of band structure calculations were

used to analyze the electron mobility enhancement of arbi-

trarily strained Silicon.

2 Band structure calculations

The EPM including spin orbit coupling, developed by

Chelinkowsky and Cohen [8], is frequently used to calculate

the full band structure of semiconductors, because it is effi-

cient and requires only a low number of fitting parameters.

These few parameters are usually calibrated in order to fit

energy gaps determined from experiments, and are available

for a large set of materials.

The EPM was later adapted to incorporate strain effects

produced by epitaxy. The band structure calculations for epi-

taxially grown Si1−x Gex layers on Si1−yGey for (100) sub-

strate orientation were reported in [9], and for other orien-

tations in [10, 11]. In the following we present how general
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strain conditions can be incorporated in the EPM with a focus

on strain arising from uniaxial stress.

Strain from uniaxial stress

While epitaxial strain for arbitrary substrate orientations can

be calculated according to [12], here we describe the calcu-

lation of strain when applying a uniaxial stress of magnitude

P along a general direction. The analysis begins by adopting

a coordinate system (x ′, y′, z′) in which the x ′ axis is parallel

to the stress direction. This system is related to the coordinate

system (x, y, z) of the primary crystallographic axes of the

semiconductor by a rotation U

U (θ, φ) =
⎛⎝ cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞⎠ . (1)

The angles θ and φ are the polar and azimuthal angles of

the stress direction relative to the coordinate system (x, y, z).

In the (x ′, y′, z′) coordinate system the stress tensor has only

one non-zero component σ ′
xx = P . Using the relationship be-

tween coordinate systems for tensors, the stress in the prin-

cipal system can be calculated from

σi j = UαiUβ jσ
′
αβ. (2)

The strain components can be calculated by inversion of

Hooke’s law εi j = Si jklσkl , where Si jkl denotes the elastic

compliance tensor and εi j the strain tensor. Using the above

relations the strain tensor in the principal coordinate system

reads

ε[110] =
⎛⎝ (s11+s12)P/2 s44 P/4 0

s44 P/4 (s11+s12)P/2 0

0 0 s12 P

⎞⎠
for uniaxial stress of magnitude P applied along [110]. Here,

s11, s12, and s44 are the three independent compliance con-

stants of a semiconductor with cubic symmetry. Strain from

stress in general directions [hkl] can be obtained by applying

the proper coordinate transformation in (1).

Symmetry considerations

The number of symmetry elements P(	) at the center of

the Brillouin zone (BZ) of the strained lattice determines the

volume of the irreducible wedge, 
irred = 
BZ/P(	). For

stress along 〈100〉, 〈111〉, and 〈110〉, P(	) can be shown to

be 16, 12, and 8, respectively, while for stress not along high

symmetry directions, the lattice is invariant only to inversion,

yielding P(	) = 2. In this case the energy bands have to be

calculated on half of the first BZ.
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Fig. 1 Irreducible volume of the first BZ of Silicon being uniaxially
stressed along [111] (left) and [110] (right)

The irreducible volume of the strained crystal can be split

into wedges, forming the irreducible zone of the unstrained

crystal. Stress along a 〈100〉 axis yields the same symmetry

reduction as biaxial strain resulting from epitaxial growth on

a (001) oriented wafer. The energy bands have to be calcu-

lated in a volume consisting of three irreducible wedges of

the unstrained lattice. Stress along 〈111〉 or 〈110〉 yields a

higher symmetry reduction. The corresponding irreducible

volumes are shown in Fig. 1. If uniaxial stress is applied

along 〈111〉, the irreducible zone contains four wedges, and

six wedges for stress along 〈110〉. The symmetries can be

exploited for models based on the full band structure, since

energy bands have to be calculated and stored only in the

irreducible volume of the first BZ.

Calculation details

Silicon band structure calculations were performed with a

parameter set provided in Ref. [9] and results are in good

agreement with the cited work for unstrained and biaxially

strained Silicon. To handle general strain conditions, some

modifications in the band structure calculation are implied:

(i) The strained direct lattice vectors have to be calculated

from the strain tensor to determine the strained reciprocal

lattice vectors, used for the diagonalization of the Hamilto-

nian matrix, and the normalizing volume of the strained unit

cell. (ii) Since the local pseudopotential form factors enter

the calculation at the strained reciprocal lattice vectors, an

interpolation through the pseudopotential form factors is re-

quired. Several expressions have been proposed [9, 13]. We

follow [9] using kF = 1.66 (2π/a0) for the Fermi wave vec-

tor. (iii) Generally, the macroscopic strain is not sufficient to

determine the absolute positions of the two atomic positions

in the bulk unit cell. An additional displacement has to be

accounted for in terms of an internal strain parameter [14].

For stress along [110] the additional displacement along the

z-axis is given by

uz = −ξ

2
· (1 + εxx )εxy

1 + εzz
a0, (3)
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where a0 denotes the Silicon lattice constant. The internal

strain parameter ξ was set to 0.53 according to theoretical

calculations [15]. Analogous expressions for the additional

displacement u can be obtained for other stress directions

[10, 14].

3 Results

From EPM calculations a shear deformation potential 
u

of 9.3 eV was extracted. This value can be used to calcu-

late the strain induced valley splitting for biaxially strained

and uniaxially stressed Silicon using linear deformation po-

tential theory. In Fig. 2 it is shown that biaxial tension is

more effective in splitting the conduction bands than uni-

axial tension in 〈110〉 and 〈120〉. Note that for 〈120〉 stress

the conduction bands splits into three two-fold degenerate

pairs.

The effective masses were extracted from the curvature of

the energy bands at the conduction band minima along var-

ious directions. Figure 3 shows how uniaxial tensile stress

along 〈110〉 leads to a significant change of the �2 transver-

sal masses, whereas the mass change is smaller for stress

along 〈120〉 and negligible for biaxial tensile strain. Note,

that these results are in good agreement with a study recently

reported in [6]. Bulk mobility was calculated by Monte Carlo

simulations [16]. The MC simulator VMC was extended to

allow the simulation of bulk electron mobility of uniaxial

〈110〉 stressed Silicon. For this purpose we have parameter-

ized the effective mass change of the �2 valley observed

from EPM calculations: mt,|| = 0.196 − 0.016 · P, mt,⊥ =
0.196 + 0.029 · P , and ml = 0.914 + 0.0236 · P2. Here, ml

denotes the out-of-plane mass, mt,|| and mt,⊥ the in-plane
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Fig. 2 Effect of biaxial tensile strain and uniaxial 〈110〉 and 〈120〉
tensile stress on X-valley splitting. Strain component in the stressed
direction is plotted
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Fig. 3 Effect of biaxial tensile strain and uniaxial 〈110〉 and 〈120〉
tensile stress on the in-plane masses of the �2 valley
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Fig. 4 Mobility enhancement for uniaxial [110] tensile stress with
(×) and without (+) effective mass correction. Symbols (·) show the
anisotropic mobility enhancement for the same amount of stress along
[100]

masses parallel and perpendicular to stress, and P the mag-

nitude of uniaxial stress along 〈110〉 in units of GPa. The

direction of stress leads to a pronounced anisotropy of the

mobility in the transport plane. In Fig. 4 the anisotropy of

�μn is compared for different stress directions. It can be

clearly seen that �mt cannot be neglected for 〈110〉 uniaxial

stress.

Strain induced valley splitting and the effective mass

change induced by uniaxial stress along [110] can be bene-

ficially superimposed to yield the highest mobility enhance-

ment in a system with in plane biaxial tension and uniaxial

stress along 〈110〉. In Fig. 5 the in-plane mobilities parallel

and perpendicular to [110] are shown. It can be seen that

the mobility enhancement of 40% in transport direction, ob-

served in biaxially strained Si on Si0.9Ge0.1, can be as well
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Fig. 5 Simulated bulk mobility for systems combing uniaxial 〈110〉
tensile stress and biaxial tensile strain in [110] (solid lines) and [110]
(dashed lines) direction. The symbols show the mobility calculated from
the analytic mobility model [17]

acomplished in Si by applying uniaxial tensile stress along

〈110〉 of around 1 GPa.

The physically based low-field mobility model in [17]

was extended to take into account the stress induced effec-

tive mass change of the �2 valley. This in turn leads to a

modification of the scaled inverse mass tensor m̂−1
z (Eq. (6)

in [17]). The mobility tensor thus becomes non-diagonal in

the principal coordinate system with mc/2(m−1
t‖ + m−1

t⊥ ) and

mc/2(m−1
t‖ − m−1

t⊥ ) as the diagonal and non-diagonal entries,

respectively.

4 Conclusions

The non-local empirical pseudopotential method has been

generalized to incorporate strain effects arising from uniaxial

stress. Symmetry considerations can be exploited to deduce

the shape of the irreducible wedge under stress along 〈100〉,
〈111〉, and 〈111〉. Our results for the Silicon band structure

confirm the experimentally observed warping of the conduc-

tion band, when uniaxial tensile stress is applied along 〈110〉.
It is demonstrated that accurate models for the electron mo-

bility in uniaxially stressed Silicon need to take into account

the electron effective mass change.
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