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Abstract. We announce a two dimensional WIgner ENSemble (WIENS)
approach for simulation of carrier transport in nanometer semiconductor
devices. The approach is based on a stochastic model, where the quantum
character of the carrier transport is taken into account by generation and
recombination of positive and negative particles. The first applications of
the approach are discussed with an emphasis on the variety of raised com-
putational challenges. The latter are large scale problems, introduced by
the temporal and momentum variables involved in the task.

1 Introduction

The Wigner formulation of the quantum statistical mechanics provides a conve-
nient kinetic description of carrier transport processes on the nanometer scale,
characteristic of novel nanoelectronic devices. The approach, based on the con-
cept of phase space considers rigorously the spatially-quantum coherence and can
account for processes of de-coherence due to phonons and other scattering mech-
anisms using the models developed for the Boltzmann transport. Almost two
decades ago the coherent Wigner equation has been utilized in a deterministic
1D device simulators [3J4[T]. The latter have been refined towards self-consistent
schemes which take into account the Poisson equation, and dissipation processes
have been included by using the relaxation time approximation. At that time it
has been recognized that an extension of the deterministic approaches to two di-
mensions is prohibited by the enormous increase of the memory requirements, a
fact which remains true even for todays computers. Indeed, despite the progress
of the deterministic Boltzmann simulators which nowadays can consider even
3D problems, the situation with Wigner model remains unchanged. The reason
is that, in contrast to the sparse Boltzmann scattering matrix, the counter-
part provided by the Wigner potential operator is dense. A basic property of the
stochastic methods is that they turn the memory requirements of the determinis-
tic counterparts into computation time requirements. Recently two Monte Carlo
methods for Wigner transport have been proposed [7l5]. The first one has been
derived by an operator splitting approach. The Wigner function is presented
by an ensemble of particles which are advanced in the phase space and carry
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the quantum information via a quantity called affinity. The latter is updated at
consecutive time steps and actually originates from the Wigner potential, whose
values are distributed between particles according their phase space position.
This ensemble method has been applied in a self-consistent scheme to resonant-
tunneling diodes (RTD’s), the scattering with phonons is accounted in a rigorous
way [7]. Recently it has been successfully extended to quasi two dimensional sim-
ulations of double gate MOSFET’s [6]. The second method is based on a formal
application of the Monte Carlo theory on the integral form of the Wigner equa-
tion. The action of the Wigner potential is interpreted as generation of couples
of positive and negative particles. The quantum information is carried by their
sign, all other aspects of their evolution including the scattering by phonons are
of usual Boltzmann particles. The avalanche of generated particles is controlled
by the inverse process: two particles with opposite sign entering given phase
space cell annihilate. The approach offers a seamless transition between classical
and quantum regions, a property not yet exploited for practical applications.

WIENS is envisaged as an union of theoretical and numerical approaches, al-
gorithms and experimental code for 2D Wigner simulation of nanostructures. In
contrast to device simulators which, being tools for investigation of novel struc-
tures and materials rely on well established algorithms, WIENS is comprised
by mutually related elements which must be developed and tested for relevance
and viability. Many open problems need to be addressed such as the choice of
the driving force in the Wigner equation, pure quantum versus mixed classical-
quantum approaches, the correct formulation of the boundary conditions, ap-
propriate values for the parameters and a variety of possible algorithms. We
present the first results in this direction. In the next section a semi-discrete for-
mulation of the Wigner equation for a typical MOSFET structure is derived. An
Ensemble particle algorithm is devised in the framework of the second approach.
Next, simulation experiments are presented and discussed. It is shown that, de-
spite the nanometer dimensions, the temporal and momentum scales introduce
a large scale computational problem.

2 Semi-discrete Wigner Equation

A system of carriers is considered in a typical 2D structure, for example of a
MOSFET shown in Fig. 1. The device shape is a perfect rectangle with the highly
doped Source and Drain regions at the left and right bottom ends respectively.
At the very bottom, to the left and right of the Gate are shown parts of the leads.
These supply carriers and thus specify the boundary conditions in the two tinny
strips marked in black. It is assumed that the current flows between the device
and the leads only, that is, at the rest of the device boundary including the region
under the gate carriers are reflected. The state of the carriers is characterized by a
wave function which becomes zero at and outside these boundaries. Accordingly
the density matrix p(ri,re), will vanish if some of the arguments r = (z,y)
is outside of the rectangle (0,L) = (0,L);(0,L,) determined by the device
dimensions. This condition holds everywhere but on the leads. We postpone the
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discussion of the leads and first introduce the Wigner function as obtained from
the density matrix by the continuous Wigner-Weyl transform:

1 ks S S
fw(r,k,t) = W/ dse™ p(r + 5,1‘— 5,75); (1)

where r = %, S=r1 —Ia.
The condition 0 < rq,rs < L, (which holds everywhere but on the leads) gives
rise to the following condition for s:

—L.<s< L L. =2min(r,(L —r)). (2)

The confinement of s allows to utilize a discrete Fourier transformation in the
definition (). Two details must be adjusted. L., which is actually the coher-
ence length, depends on r. Thus the discretization of the wave vector space will
change with the position which is inconvenient. Fortunately, since any partially
continuous function of s defined in given interval (a, b) can be presented by the
Fourier states of a larger interval, we can conveniently fix the coherence length
to the maximal value of the minimum in ([@): L. = L. As the values of the
function outside (a, b) are extrapolated to 0, we must formally assign to p a do-
main indicator p(s), which becomes zero if (2) is violated. However, according
the above considerations, §p is implicitly included in p. From a physical point of
view the problem whether to consider the leads or not is still open: Usually leads
are included in 1D simulations and the integral in () is truncated somewhere
deep in them for numerical reasons. In a recent study [2] it is argued that in
the leads there are processes which entirely destroy the quantum interference
between the point r — s, Fig. 1, and the corresponding counterpart r + s. In this
way the integral in (IJ) has to be truncated already at the point where the line
along s enters into the gate (G) region. Alternatively, if leads are considered, the
segment of this line lying in the gate region (and the corresponding counterpart
in the device) are excluded from the integral. The correlation is enabled after the
point of entering into the leads. However, even in this case, s remains bounded.

G

Fig. 1. Typical 2D structure
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In this case L. must be augmented to (0,L,); (—Ly, Ly). By changing s to 2s
and applying the discrete Fourier transform:

L./2
1 .
fem) = - [ dsenepes)
‘L2
plrs) = S emaks f(r )

Ak = 7/L,

to the von-Neumann equation for the density matrix we obtain a Wigner equa-
tion which is continuous in space and discrete in momentum:

of(r,M,t) h of o«
—S e - MAk (ML) = m;w Vi (r,m) f,, (r, (M — m), t).
Here the Wigner potential is defined as:
11 (L :
Vo, M) = —— dse”MAKS(V(r £ 5) — V(r —s))0p(s) (3)
ih LC —L./2

We note the presence of the domain indicator in this definition. According the
particle sign approach [5], the Wigner potential generates particles with a fre-
quency given by the Wigner out-scattering rate v obtained from (B)):

y(@) =Y [Va(r, M) (4)
M=0

The shape and magnitude of 7 strongly depend on the treatment of the leads,
as it will be shown in what follows.

3 Numerical Aspects and Simulations

The above theoretical considerations are presented for a coherent transport,
where the interaction with phonons is switched off. As the corresponding coher-
ent algorithm is the core module of WIENS, it must be carefully developed and
tested. We furthermore focus on the stationary case, where the boundary con-
ditions control the carrier transport. The initial picture of the algorithm under
development is of an ensemble of particles which is evolved in the phase space
at consecutive time steps. The boundary conditions are updated after each step
in the usual for device simulations way.

The magnitude of + is of order of [10*®/s] so that the avalanche of particles
does not allow an individual treatment of each particle as in the classical En-
semble Monte Carlo algorithm. Particles must be stored on grid points of a mesh
in the phase space, where the inverse process of annihilation occurs. Thus along
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with the wave vector spacing Ak, also the real space must be divided into cells
of size Ar. Actually two arrays are needed to store the particles.

At the beginning of an evolution step the initial one, fi, is occupied by par-
ticles, while the second one, fo, is empty. Particles are consecutively taken from
f1, initiating from randomly chosen phase space coordinates around the corre-
sponding grid point. A selected particle evolves untill the end of the time step
and then is stored in fy. The stored wave vector corresponds to the initial value
since there is no accelerating field. The particle gives rise to secondary, ternary
etc. particles which are evolved in the phase space for the rest of the time and
then stored in fy. As they are generated on the same grid in the wave vector
space, the assignment in straightforward. As a rule the particles injected by the
boundary conditions are slow (low wave vector), while these generated by the
Wigner potential are fast. The wave vector ranges over several orders of magni-
tude so that the task for the position assignment becomes a large scale problem:
A straightforward approach is to assign the particle position to the nearest grid
point. For fast particles which cross several cells during the time step this intro-
duces small error in the spatial evolution. More dramatic is the situation with
the slow particles: if during the time step a particle crosses a distance less than
a half of the mesh step it can remain around a grid point for a long time. This
is an example for artificial diffusion which is treated in the following way:

(i) Slow particles, e.g., these which belong to the ground cell around the origin
of the wave vector are treated in a standard ensemble approach: the phase
space evolution is followed continuously throughout the device.

(ii) The grid assignment is chosen stochastically, according a probability propor-
tional to the distance to the neighborhood grid points.

Another large-scale aspect is related to the range of the time constants involved
in the problem. The existence of very fast particles imposes an evolution step of
few hundreds of femtosecond. The time step t, between successive assignments
to the grid is of order of femtosecond, while the total evolution must be above
picosecond in order to reach the stationary conditions. Accordingly large com-
putational times are expected. Thus the first objective of the computations is
to investigate the convergence, to optimize where possible the algorithm and to
find appropriate values for the parameters leading to stable results. The latter
are a necessary condition for solving the physical aspects of the problem: finding
a proper normalization, a choice of the boundary conditions and investigation
of the quantum phenomena will be focused on a next step.

Two structures, A and B of the type shown on Fig. 1 are considered in the
experiments. A I" valley semiconductor with a small effective mass (0.036) has
been chosen to enhance the effects of tunneling. The potential and dimensions
of device A are twice as small as compared to device B.

The potential of B is shown in Fig. Bland Fig.Blas a contour plot respectively.
The potential is obtained from the self-consistent Boltzmann-Poisson solution: In
the quantum case the entire potential is used to calculate v(r) and the scattering
probability table. The driving force is zero so that the carriers perform a free
motion throughout the device until the reflecting boundaries.
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Fig. 2. Device potential Fig. 3. Contour plot of the potential
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Fig.4. v(r), device B

Fig. @ shows v(r) computed for the case including the leads. At the injecting
boundaries in the source and drain regions (compare Fig. []) the generation rate
is very high so that an injected particle feels the Wigner potential already at the
boundary. On contrary, if leads are excluded the generation rate is zero at this
boundary.

Figures[BlandBlshow ~y in device A, computed for either of the two cases. There
is a profound difference of the shape and magnitude of this quantity on the two
pictures. The contour plots of the classical and quantum densities in device A,
no leads considered, are compared in Fig.[7land 8 Both densities have the same
shape, however the quantum counterpart is more spread inside the device which
can be related to tunneling effects. We note that the quantum density is due to
effects of generation and recombination only, so that the basic similarity was the
first encouraging result. In particular, since the small generation rate ~ 10'4/s
the time ¢,between successive assignments is a femtosecond, so that the effect
of artificial diffusion is negligible. Here the algorithms treating this effect have
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Fig. 7. Boltzmann carrier density Fig. 8. Wigner carrier density

been introduced and tested by reducing t,. Fig. [0 demonstrates the much slower
convergence of the quantum current as a function of the evolution time.

The potential of device B, Fig. B, has a shape of two valleys separated by
a high barrier with a maximum between the valleys. Between this maximum
and the high potential at the bottom of the base there is a saddle point. The
carrier density is expected to follow this pattern: carriers fill the valleys while
their number should decrease with the raise of the potential. This is essentially
the behavior of the quantum densities at Fig. [0 and Fig. Il The former is
obtained for a spatial step of 0.2nm giving rise to a Wigner function with 41.10°
elements. Since the great number of particles the evolution time reached after
30 days of CPU time of a regular 2.5 GHz PC is one picosecond only. Fig. [l
corresponds to a 0.4nm step: the dimension of the Wigner function is around one
order of magnitude smaller and the convergence is as much faster. The use of
such step became possible due to the algorithms avoiding the artificial diffusion.
A difference in the normalization factor along with some nuances in the shape
exist, e.g., in the density around the saddle point and the position of the left peak.
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Fig. 9. Convergence of the current

Fig. 10. Carrier density for a 0.2 nm mesh  Fig. 11. Carrier density for a 0.4 nm mesh

Several factors can be responsible for this difference: the annihilation mesh is
different, the number of the used k states, the option that Fig. [0 is not yet in a
stationary state. These problems can not be answered without implementation
of MPI and GRID technologies which is currently underway.

4 Conclusions

A stochastic approach is developed within a semi-discrete Wigner-Weyl trans-
form, for which the problem of 2D Wigner transport is not an impossible numer-
ical task. The obtained first results are qualitative and mainly demonstrate the
convergence, which, furhtermore characterizes a large-scale computational prob-
lem. MPI and GRID technologies must be implemented to address the physical
aspects such as proper boundary conditions, normalization and resolution of the
incorporated quantum phenomena.
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