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Abstract. We present a complete topological framework that is able to
provide incidence traversal operations for various topological elements.
This enables one to perform the necessary topological operations for
several discretization schemes. A combination of incidence information
combined with an archetype concept enables one to optimize traversal
operations of inter-dimensional objects without explicitly storing them.
Access to topological structures is provided using a generalized iterator
concept.

1 Introduction

The field of scientific computing often imposes highly complex formulae with
quantities on different topological elements. For example, some discretization
schemes require the scalar solution to reside on vertices, while the projections
of the vector-valued fluxes are stored on edges. Many applications require such
a discretization of partial differential equations (PDE) as well as interpolation
mechanisms and thus strongly depend on the base traversal mechanisms provided
by the environment. It is quite common for a discretization scheme to require
quantities originally associated with a vertex on an edge and vice versa. The
projections of fluxes on edges also need to be assembled to truly vector-valued
quantities associated with a vertex and an edge. In order to accomplish this, the
required information has to be collected by traversing the local neighborhood of a
vertex or an edge. To this date, data structures and algorithms are implemented
in a heavily application and discretization scheme specific way, making their
reuse practically impossible.

We present a set of base traversal operations that is sufficient for many ap-
plications. This approach results in a rigorous implementation of topological
structures, which covers all types of topological elements such as vertices, cells
and general inter-dimensional elements called faces. The expressiveness of source
code is increased, because we do not need to explicitly write traversal algorithms
for each of the elements, such as edge-cell traversal, because this information can
be derived from a subset of highly optimized operations automatically.

The iterator concept allows to formulate algorithms based on this interface
independently of the actual implementation of the topological data structure
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including dimension and archetype. The consequent use of this interface leads to
dimensionally and topologically independent formulations of algorithms, e.g. a
finite volume discretization scheme can be formulated independently of the type
of cell complex and the dimension.

2 Motivation and Related Work

The motivation for developing a topological framework is derived from the need
for flexibility in high performance applications in the field of scientific comput-
ing, especially in Technology Computer-Aided Design (TCAD). With a growing
number of different simulation tools [TI2I3/4U5] and various requirements on the
underlying data structures the question arises which part of an application can
be re-used, if it is properly implemented. The main aim of our work is to pro-
vide a library that offers the functionality common to many different kinds of
simulation tools in the field of scientific computing. This is especially true for
functions which are evaluated on a topological cell complex.

In the last decade many approaches towards implementing a general pur-
pose simulation environment for the solution of partial differential equations
have been taken. Most of the tools resulting from these attempts use topological
structures which are specialized to a particular discretization scheme. This re-
duces resource use, but it comes at the cost of greatly diminishing the flexibility
of topological traversal. As an example, the finite volume method does not re-
quire vertex-faces traversal. However, for some reasons it might be advantageous
to implement discretization equations based on a mixed finite element /finite vol-
ume scheme which requires such traversal operations.

The major step towards a more flexible use of topological structures is pre-
sented in [6]. The grid algorithm library (GrAL) introduces the first generalized
iterator concept [7] based on multi-dimensional data structures.

Most of the other environments completely veil the topological information
by formalisms such as element matrices [8] and control functions [9]. Some com-
mercial simulation tools, such as FEMLab, accept the input in the form of a final
PDE. For this reason calculations which use non-standard traversal mechanisms
are cumbersome or impossible to specify.

3 Framework and Interfaces

The main aim of the topological container interface is to provide mechanisms
for construction, modification and traversal. The most important conceptual
requirement for the topological data structure is the retrieval of incidence infor-
mation. We define the incidence relation in the following manner:

inc(a,b) aCbVvadbd (1)

where a and b denote different topological elements. In the following table (Fig. [I])
we list all different methods of incidence which are possible between topological
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elements of different dimension. It can be seen easily that the incidence relation
of elements of the same dimension can be modeled by the equality relation. The
first row shows all edges, faces as well as cells which are incident with the same
base vertex. The first column shows vertices which are incident with one base
edge, faces or cell.
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Fig. 1. Traversal methods induced by the incidence relation. horizontal: traversal
schemes of the same base element. vertical: traversal scheme of the same traversal
elements.

3.1 Topological Container Concept

The topological container covers the basic information of the topological cell
complex. Our concept provides a subset of the required methods (Fig. ) from
which all further information can be obtained. According to the concepts of the
standard template library (STL [I0]), we provide iterators for the cells as well as
the vertices of the cell complex. In analogy to the STL we use a formulation with
begin() and end(). In order to obtain the base traversal mechanisms between
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Name Description Requirements
vertex iterator iterator over vertices iterator concept
vertex begin(), vertex end() iterator range const
cell iterator iterator over cells iterator concept
cell begin(), cell end() iterator range const
cell vertex local traversal iterator constructable with cell
vertex cell local traversal iterator constructable with vertex

Fig. 2. Concepts for the topological base structure

vertices and cells we define traversal iterators. These traversal iterators perform
the operations shown in Fig.[Il (c) and (j).

Due to the concept definition (Fig.[2)) of the cell complex container we can for-
mulate algorithms conveniently. As an example we present an algorithm which
traverses all vertices as well as all cells.

Global Traversal

cell complex t cc;
cell complex t::vertex iterator v it;
for(v it = cc.vertex begin ();

v it = cc.vertex end (); ++v it)

// do something on wvertices

cell complex t::cell iterator c it;
for(c it = cc.cell begin ();
c it != cc.cell end (); ++c it)

// do something on cells

A direct consequence of the use of the iterator ranges vertex begin(),
vertex end () is that standard algorithms such as for each are automatically
supported.

3.2 Topological Elements and Handles

The data structures for single topological elements is kept to a bare minimum.
In general, each topological data structure covers a so called handle in order
to be distinguishable from other topological elements. Basically any type can
be used for these handles, which allows to uniquely identify the element within
all elements of the same dimension. The value of such handles itself does not
have any semantic meaning apart from being equal. The only valid operation on
handles is, therefore, the equality relation.

For inter-dimensional topological elements a unique identification can be
found either via storing all the vertices or storing a cell and a local index which
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determines the element within the cell. We discuss vertex based indexing in the
following. A handle of an inter-dimensional element is uniquely constructed by
the vertex handles, e.g. hp = hy, +n - hy, where the following abbreviations are
used:

— hp: the handle used by a faces
— hy,: the handle from each vertex
— n: the number of vertices

For this reason the reconstruction of vertex information from the handle is
straightforward. This covers incidence operations (Fig. [l (d) and (g)).

3.3 Archetypes

As we only store incidence information between cells and vertices (Fig.[Il (¢) and
(j)) the incidence relation between inter-dimensional elements is still undefined.
There are many methods to specify this kind of information, for instance to use
containers and explicitly storing this information. Even though this is possible
and can be used in cases where high performance is required, such methods
result in a high memory consumption, because most of the information has to
be duplicated.

In the following we take advantage of the fact that all elements within the
container have the same shape (e.g. tetrahedral elements). If this is not the case
(e.g. we have a small number of elements of different shape), we have to perform
a dispatch operation in order to obtain the correct shape.

The concept that provides the internal structure of the cells within the cell-
complex is called an archetype. The archetype [6] introduces local inter-
dimensional elements within a cell. A topological 2-simplex, for example, consists
of three vertices and three 1-faces (edges). The archetype can be shown either
as simple graph or Hasse diagram (Fig. B]).

Using the archetype concept as well as the vertex on cell relation (Fig. [ (j))
we can derive further traversal mechanisms (Fig. [l (k) and (1)) as each cell is
aware of its covered vertices.

va4 E3
’ © -

vl E1 v2

Vi E1 V2 0

Fig. 3. The graph as well as the Hasse Diagram of the 2-simplex as well as a 2-cuboid
archetype
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3.4 Traversal Operations

Once the archetype as well as the vertex-cell incidence information is available,
all incidence relations between arbitrary elements of the cell complex can be cal-
culated. The topological framework stores vertex-cell incidence relations within
the container which can be seen in Fig. [II (¢) and (j).

We present an example using the simplex archetype to introduce the com-
putational operations that complete the traversal operations. All other relations
((a,b)(d,e,f,)(g,h,i)(k,])) in Fig. @ are taken care of by the framework. From topo-
logical handles of inter-dimensional elements vertex on element iteration can be
obtained (Fig.[ (d) and (g)). Due to the archetype information we obtain the el-
ement on cell traversal (Fig. [l (k) and (1)). These base relations are sufficient for
the construction of all other element-element incidence relations. The following
algorithm gives a generic implementation for obtaining the traversal information
via the base operations.

Incidence traversal

get all vertices which belong to the element (d) (g) (j)

get all cells which belong to these vertices (c)

get all n—dimensional sub—elements on those cells (j) (k) (1)
select the incident elements (by vertex—comparison)

We show the application of this algorithm using the example of faces on
edge traversal (Fig. [ Fig. [ (e)). From the initial edge we obtain the vertices
which are located on the edge using the basic traversal mechanism (d). Using
the vertex-cell (c) information we obtain all cells which cover the vertices. We
obtain all faces which are on these cells by method (k). From this set we select
only the faces which are incident with the initial edge.

Fig. 4. Construction of the faces on edge traversal set. (left) The initial edge. (middle)
The vertices on the initial edge. (right) Incident faces.

As all of these operations are local, we do not need to iterate all elements
of a cell complex in order to perform an incidence traversal operation. This
construction method is superior to an explicit search of topological elements
within the complete cell complex for large meshes.



A Computational Framework for Topological Operations 787

3.5 Generalized Iterator Concept

In order to allow an arbitrary number of nested traversal operations, which is
often required in applications, it is necessary to have appropriate data structures
for traversal in order to keep the program code as concise as possible. For this
reason we use the random access iterator concept in order to provide access to
the topological elements. We refine the iterator concept [7] for data structural
convenience (Fig. Bl). In contrast to the STL iterator concept, dereferentiation
of this generalized iterator does not provide the data content but a handle, that
is used as a key to access a property map or quantity [II] in order to obtain
the contained data. Our iterator concept is a refinement of the random access
iterator concept and introduces the following additional concepts.

Name Description Requirements
bool valid() validity of iterator (not end) const
iterator end() past end of iterator validity const
void reset() set to the start point const

Fig. 5. Concept refinement for the generalized iterator within the topological frame-
work

To demonstrate the application of the valid() predicate we show a simple
example of two nested iterations. We traverse from a base vertex to all incident
edges and from these edges to incident vertices. (Fig. 1, (a) and (d))

The validity concept and its application

cell vertex voc it(cell);
while(voc it.valid ())

{

vertex edge eov it (xvoc it);

while(eov it.valid ())

{

operations on edges
//op g
++eov it

}

++voc it;

}

In the first traversal state, a cell is used to perform an iteration over all its
incident vertices. Each incident vertex *voc it is available in the outer loop. The
inner traversal loop is initiated using the actually traversed element of the outer
loop. From this vertex we obtain all incident edges using the dereferentiation of
the inner iterator.

In order to use standard algorithms of the STL, a data structure has to provide
an initial as well as a terminal element. For this reason the end () function can
be employed.
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The iterator end functionality and its application

struct func obj{
void operator ()(cell t cell) { cout << ¢ << endl;}

s

cell vertex voc it(cell);
for each(voc it, voc it.end(), func obj());

As many of the iterators require a non-negligible time for construction, it
is often more efficient to use an iterator twice rather than creating a second
instance for the same purpose. For this reason we introduce the reset function
that enables us to reset an iterator to the beginning of the iteration range.

Usage of the reset function

cell vertex voc it(cell);
for (; voc it.valid (); ++voc it)

{ // ... some operation

}

voc it.reset ();

for (; voc it != voc it.end(); ++voc it)
{ // ... some operation

}

4 Generalized Data Access

The topological data structure itself, however, is not sufficient to perform com-
plex calculations on such a structure. For this reason we provide means for the
storage of values on the topological container. Each of the topological elements
such as vertices or edges can be associated with one or more values.

In our approach, the property map concept [7] is adopted, which offers the
possibility of accessing the quantities in a functional way by a mechanism called
quantity accessor. The quantity accessor implementation also takes care of ac-
cessing quantities with different data locality, e.g., quantities on vertices, edges,
faces, or cells. The quantity accessor is initialized with a domain. During ini-
tialization, the quantity accessor quan is bound to a specific domain with its
quantity key. The operator () is evaluated with a vertex of the cell complex as
argument and returns a reference to the stored value.

Quantity assignment

string key quan = "user quantity”;
quan t quan = scalar quan (domain, key quan);
quan(vertex) = 1.0;

In the following code snippet a simple example of the generic use of this
accessor is given, where a scalar value is assigned to each vertex in a domain. The
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quantity accessor creates an assignment which is passed to the std: :for each
algorithm.

Quantity assignment

string key quan = ”user quantity”;
quan t quan = scalar quan (domain, key quan);
for each (cc.vertex begin(), cc.vertex end (), quan = 1.0);

5 Conclusion

A computational mechanism was introduced for completing traversal operations
obtained from the archetype’s structure and a minimum of explicitely stored
information. As a result we presented a framework that provides a complete
means of topological traversal operations based the concept of archetypes.

Our framework presented here integrates well into existing software compo-
nents such as the STL.

The use of clean, well defined iterator interfaces alongside generalized stan-
dard routines makes it possible to develop orthogonal and modular software.
Futhermore the provided means are not only sufficient to build a homoegenous
interface but can also be used to implement several discretization schemes.
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