
Labtool - A Managing Software for Computer Courses

R. Heinzl, G. Mach, P. Schwaha, and S. Selberherr

Institute for Microelectronics, TU Wien
Gußhausstraße 27-29/E360, A-1040 Vienna, Austria

E-mail: {heinzl|mach|schwaha|selberherr}@iue.tuwien.ac.at

KEYWORDS

computer courses, managing software, monitoring and grad-
ing system, web front end, LDAP, kerberos, PHP

ABSTRACT

A comprehensive tool to manage computer courses was de-
veloped relying on a library centric application design. Back-
ward compatibility to existing systems, and special emphasis
on usability were also part of the design process. The expe-
rience gathered from implementing monitoring and control-
ling modules for the heterogeneous hardware and software
system was applied to make the system error tolerant. To
this end we specified, developed, tested, and evaluated sev-
eral modules and a graphical user interface and finally in-
tegrated them into a programming computer course at our
university.

INTRODUCTION AND MOTIVATION

The basic question we faced at the beginning was, how to
automatically organize, e.g. a programming language course
for 200 to 300 students in groups to 30? More importantly,
how can a heterogeneous system with various services and
tasks be implemented in a stable fashion that does not inter-
fere with a continuing evaluation of students? We therefore
summarize the most important issues in developing software
for computer courses from the view of a programming lan-
guage lecture for the first and second semester at a univer-
sity:

- availability of the system needs to be at 100 percent
during the courses

- automation of various tasks such as tracking the
progress of students, report generation, and system ser-
vice overview

- limited resources such as instructors, and computers

- appointment constraints like other courses (on both
sides - students and teachers)

- necessary data exchange with other departments of the
university or other programs to administrate the course

Since we did not find any free graphical tools to avoid ex-
cessive paperwork and security holes in a modular, redun-
dant, backward compatible fashion with the administrative
databases, we decided to develop and implement our Labtool.
Not only the finite resources but also social aspects had influ-
ence on the specific design. We present our implementation,
focusing on the encountered problems and their solutions.

A GENERALIZED APPROACH

One reasonable solution to the problem of limited computer
resources and a great number of students is to split the stu-
dents into groups of fixed size. Each of the groups then has
several fixed dates assigned and students are free to choose
one of the groups. The advantage of this approach is that
the group size is fixed and that the memberships and ap-
pointments are easily coordinated with other courses. The
disadvantage is that individuals cannot change the dates as-
sociated with the group they belong to. If a student cannot
attend at a set time, either individuals need to be allowed
to change between groups on single occasions or changes
of group membership as a whole have to be considered.
This, however, eliminates much of the management simplic-
ity which is among the original benefits of this method. Not
taking this into account will result in students not being able
to finish the course due to time-related reasons.

Another approach is to let the students choose individual ap-
pointments from a predetermined list of dates for each unit
of exercises. More dates need to be listed than in the previ-
ous approach to accommodate all students, but on the other
hand students have a large degree of freedom and flexibility
in choosing their appointments.

PHP Web Front End (GUI)

Databases

LDAP

MySQL

Authentification

kerberos

Phyton Scripts

Unix Shell Commands

(latex, convert, ...)

Figure 1: Based on an orthogonal software design the Labtool

can be split into several modules with consistent interfaces.

488

An important fact related to social issues is the incorporation
of the users. Whenever developing and implementing new
management software, it turned out that acceptance among
users is highest when

- they are involved in the development process and

- the software is fully backward compatible to any solu-
tion that may have been deployed before.

The integration of users in the whole development process
not only increases acceptance, but also reduces the probabil-
ity of erroneous use of the whole system.

The remaining issues listed in the requirements can be ad-
dressed by technical solutions which are presented in the
subsequent sections.

THE DEVELOPED SYSTEM

The complete system consists of a laboratory cluster with
several clients running basic services connected to two servers
and the management software running on these servers. A
brief overview of the structure of the management software
is given in Figure 1 whereas an overview of the technical
infrastructure is given in Figure 8.

The management software is composed of the following mod-
ules:

- a graphical user interface written in the dynamic web
programming language PHP [7],

- user databases implemented in the Lightweight Direc-
tory Access Protocol LDAP [3],

- python scripts to produce lists in LaTeX,

- an authentication module implemented by the com-
puter network authentication protocol kerberos [6] and

- a monitoring module to observe the status of system.

A very important part for the acceptance of such a system
is the ease with which the most often used tasks can be exe-
cuted. The whole system has not only to be easy to under-
stand and use, but also has to be presented appealingly. The
user has to be comfortable when working with the manage-
ment software. We therefore put special emphasis to make
all often used tasks available with as few clicks and inputs
as possible.

Figure 2 shows the ’Enable’ mask which allows to enable user
accounts for students already registered for the current date
as well as to join students who have not done so (register
them for the current date and enable their user accounts).
The input mask at the top provides an easy to use facility
to tag students with specific unique identifications, names or
registration numbers or parts thereof. Most of these func-
tions can be controlled by various click functions, e.g., it is
possible to enable the accounts of students with a singe click
in the ’Enable’ mask.

Also, we paid special attention on the concept of orthogo-
nal application design: Each module can be used by itself
or in combination with the graphical user interface (GUI),
which furthermore makes it easy to modify, supplement or
substitute single components.

In the following we present the main features of these mod-
ules. Authentication via kerberos is used to login to the
Labtool. This has the advantage that we did not have to im-
plement and maintain our own user management, but were
able to use the data already provided by the central univer-

sity system. Additionally many of the functions require the
Labtool user to be known to the system, because only cer-
tain users have sufficient privileges to perform some tasks.
We therefore implemented three groups of Labtool users:

- normal users, the instructors to hold the exercises,

- admin users, the managers of the course to additionally
modify master data of the students, dates, and appoint-
ments, and

- system administrators able to monitor and restart ser-
vices and the firewall.

Figure 2: Registered students are automatically preselected.
Additional students can be added to and removed from the
selection using the input mask.

Another design decision was how to store user data in a
database. The facts that the central university system sup-
ports LDAP queries against its students database, but also be-
cause the tree structure enforced by LDAP maps the structure
of the course best and is optimized for these accesses, were
strong arguments for ranking LDAP higher then other com-
mon solutions such as MySQL [8]. The opportunity to check
the registration data such as names or registration numbers
against the central database of the university is important
when verifying the identities at the begin of exercises and
much more when transmitting grades to the department of
reporting. The most difficult time is during the beginning of
the semester, when the courses already start but the term
of registration has not yet expired. It is not always possible
to verify the names and registration numbers of some of the
students reliably during this period. A manual management
system is therefore also available.
A student has several attributes, depicted in Figure 3, such
as names, sex, registration number, and certain flags con-
cerning his status at the course and at the system. All stu-
dents have to attend each unit of the course. Therefore the
student subscribes to each unit at a certain date thereby
generating an appointment. Each appointment is then eval-
uated. If a student shifts the date of an appointment or is
absent for some reason, another appointment is made avail-
able in the tree. Otherwise, if an appointment has a valid

489

Figure 3: The LDAP-Tree shows objects and attributes we
implemented. The attributes written in italics are optional.

grade (the student attended the exercise), the respective unit
is evaluated. Figure 3 shows the student related information
first, then the separate units, then the appointments, and
finally the possible dates to subscribe for the units.

There are many reasons for keeping the possibility to print
out reports of presence and success of a specific day or the
overall list of the course. The most basic reason is to have a
hard-copy backup in case the whole system crashes. Another
reason would be the possibility to keep the course running,
while the management software is temporary out of order.
We already pointed out that acceptance also can be approved
by keeping methods to easily downgrade to an older system
due to the fact that people do not want to be tied to changes
that cannot be undone.

For all these reasons and due to the concept of orthogonal
application design we decided to implement python scripts
and LaTeX templates to produce postscript files that can
be stored and printed within and without the management
software. Figure 4 shows an example for such a list for a
single day.

Figure 4: The list of the day is produced with python scripts
and LaTeX.

The graphical user interface front end is written in a PHP web
application for many reasons:

- Every computer providing a web browser is able to con-
trol the Labtool,

- people are accustomed to web front ends,

- no necessity to implement a separate GUI, and

- PHP provides facilities to connect to all other modules
(LDAP, Unix Shell Scripts, kerberos, MySQL, etc.).

For security and usability reasons the GUI is split in several
sections (See Figure 5).

Figure 5: The GUI is divided in sections corresponding to
the user groups.

The sections dealing with the platform specific tasks (tuto-
rials, forum to post new ideas regarding the platform, pass-
word change functionality) and holding an exercise are avail-
able to all users. To further increase comfort and minimize
needless output of paper we implemented a preview for all
lists that may be printed. We use ImageMagick for the nec-
essary conversions. Clicking a provided thumbnail opens a
new window with the preview as shown in Figure 6.

The sections to control new dates to subscribe to and man-
age the students’ master data are only available to managers
of the course. They can add, delete, and modify the data
of students, dates, and appointments. It is also possible for
them to modify the grades of any student and any appoint-
ment in this section. The last part of the GUI is reserved for
the system managers and provides logs, monitoring modules
for the services and the firewall as well as the possibility to
backup and restore the underlying databases.

One of the features to increase comfort for the user and the
security of the system is to offer the possibility to easily undo
changes or manage backups from different particular dates.
This solves the problem of data loss in general and eases the
handling of the whole system. A second reason for data loss
is fragmentary transfer of input which can be avoided by
redundancy.

Security is also threatened from outside of the system. Wher-
ever computers have a high bandwith link to the world wide
web, like at universities, the rates of attack can be consid-
erable. Furthermore students attempt to get access to man-
agement systems in order to obtain information, change their
grades, or try to get unfair assistance from other students or
the Internet. For all of these reasons our Labtool is protected
on the one side by a firewall and intrusion detection systems,
and on the other side with additional database encryption
in sensitive areas.

490

Figure 6: Clicking on the small lab maps opines a new win-
dow with the preview.

PROBLEMS AND SOLUTIONS

One of the the major problems we want to point out was
the deficient realization of the kerberos functions in PHP.
Because available documentation was badly lacking, our ap-
proach was to write our own kerberos library for PHP using
the shell commands of kerberos and the exec() function of
PHP.

Also, the system needs a great number of different services
running, devices to be mounted, and systems to be synchro-
nized. Therefore we not only implemented modules to mon-
itor all of these services and states but also a kind of self
healing mechanism. The monitoring modules ensure that
system administrators can find sources of errors easily and
quickly (see Figure 7).

The self healing modules try to avoid specific problems, such
as:

- asynchronous system clocks of the clients or unreach-
able NTP service on the server,

- not mounted net devices on the clients or unreachable
NFS service on the server,

- unreachable kerberos, syslog and fcron services re-
garding the system and

- unreachable apache, LDAP, MySQL and cups services re-
garding the Labtool

by periodically checking their status and attempting to
restart the services, and synchronizing in case of errors.

The need to keep all system clocks of the cluster synchronized
originates from the use of kerberos. It is due to the fact
that kerberos uses timestamps as part of its authentication,
the tolerance of clock skew lies within 300 seconds [6]. The
situation gets even more difficult, when, for security reasons,

Figure 7: The current status of all important services can be
monitored.

only the servers are able to connect to the Internet. The
servers update their local clock from time servers outside the
cluster and have to propagate this new time to all clients fast
enough to stay within the interval of tolerance in order to
keep authentication working. Whenever a client was offline,
it first has to synchronize its time with the server before
authenticate against kerberos is reliably possible.

To establish certain standards of security for the servers
against threats from outside the lab cluster we implemented
not only a firewall with iptables but also employ port scan
detection (psad, portsentry) and intrusion detection tools
(samhain, aide). Furthermore we installed the hardened
kernel [5] sources and built a monolithic kernel to block as
many routes for break-in attempts to the system as possible
and alert the system administrators automatically via email.

On the side of the clients in the cluster we do not allow
communication with hosts outside the specified range of IP
addresses by not providing a default gateway. Due to the fact
that SHFS is not a real distributed file system, its unavailabil-
ity at boot time and because further utilities are needed in
addition to the kernel modules for its deployment, we had to
choose a solution from the following file systems:

- AFS, which uses only version 4 of kerberos (which
makes it vulnerable to plain text attacks [2]) and the
stateless UDP protocol (which makes it difficult to use
with firewalls) and being only tagged as experimental
in the kernel which we used.

- CODA, which has low speed of writing and deleting files,
no mechanism to make files persistent other than closing
the file (which makes it difficult to use for log-files and
other files kept open for long periods of time), and re-
quires that entire files have to be read [4] (which means
that the cache must be at least as big as the biggest file
will ever be).

- NFS version 4 [1], which uses the state-full TCP proto-
col instead of UDP, allows authentication of users via
kerberos version 5, and is economic in its use of mem-
ory. In our experience it still suffers from a few stability
issues and may even freeze the system, if any of the NFS
related services fail.

To ensure minimal downtime of the system in case of a crash
of a server we mirror all necessary services, such as:

- NFS, kerberos, syslog and fcron (system functional-
ity)

- apache and cups (Labtool functionality)

491

Figure 8: The cluster is connected via Gigabit Ethernet Con-
nections.

and the following two databases:

- LDAP for the main databases

- MySQL for additional logging purposes

on a second server (see Figure 8). Furthermore all data from
the students (i.e. home directories) and the Labtool (i.e. all
lists) are backuped on a host outside the cluster every day.

OUTLOOK

We have several ideas how a system such as Labtool can be
enhanced and extended and present them in the following.
One possible extension is to implement methods that the
success of students can be evaluated by the tool automat-
ically. To this end it is necessary that the computer pro-
grams implemented by students have defined interfaces for
input and output via the main() function. Having a cat-
alog of stages with a defined interface in this manner, the
Labtool could easily detect the stages already working. Cur-
rently the tasks of the instructors in our laboratories are not
only to provide assistance to the students with their pro-
gramming tasks, but also perform a final inspection of the
students’ programs and to evaluate their skills. Enhancing
the software this way would decrease the amount of work of
the instructors and increase objectivity of assessment at the
same time.
Another improvement would be to handle the management
of appointments completely within the Labtool. The advan-
tages aside from saving work and time are first the lapse
of transfer interfaces between different programs and there-
fore the omission of a source of error. Second the students
would be able to do bilateral changes of appointments by
themselves. A possible way to achieve this is to enable the
students to send some kind of invitation to change an ap-
pointment such as the invitations sent by social software
communities / social networking websites to either a spe-
cific student (for this the students must be able to see which
student is registered for which date) or to all students regis-
tered for a specific date. The other student can then accept
or decline this invitation. If a student accepts, the appoint-
ments are changed and all other students get a message that
the invitation is recalled.

Implementing the feature this way would allow changes with-
out being online at the same time or on a common interface,
and no session keys would have to be exchanged.

CONCLUSION

We presented the development and implementation of a
comprehensive management tool for computer courses. We
thereby outlined the use of the orthogonal software design
concepts to keep the modules of the system exchangeable.
Special attention is paid to error tolerance, monitoring and
controlling software as well as self healing mechanisms. The
system had to be integrated into a running computer course
with an emphasis on backward compatibility. Usability was
always not only kept in mind, but was one of the paramount
goals of the development. We also discussed problems that
surfaced and possible ways to resolve them, so that an inter-
ested reader should be able to re-implement a similar system
and to avoid most of the problems that typically arise.

REFERENCES

[1] NFSv4, 2005. http://www.nfsv4.org/.

[2] Open AFS, 2006. http://openafs.org/.

[3] Open LDAP, 2006. http://www.openldap.org/.

[4] CODA Filesystem, 2007. http://www.coda.cs.cmu.edu/.

[5] Hardened Gentoo 2007.1, 2007. http://www.gentoo.org/

proj/en/hardened/.

[6] Kerberos: The Network Authentication Protocol, 2007. http:

//web.mit.edu/kerberos/www/.

[7] Achour, Betz, Dovgal, Lopes, Olson, Richter, Seguy, Vrana,
et al. PHP Manual, 2006. http://www.php.net/manual/en/.

[8] MySQL AB. MySQL 5.1 Reference Manual, 2006. http:

//dev.mysql.com/doc/refman/5.1/en/index.html.

BIOGRAPHIES

RENÉ HEINZL studied electrical engineering at the Technical
University Vienna. He joined the Institute for Microelectronics in
November 2003, where he finished his doctoral degree in Septem-
ber 2007. His research interests include computational science,
high performance programming techniques, solid modeling, scien-
tific visualization for TCAD.
GEORG MACH was born in Vienna, Austria, in 1979. He
studies electrical engineering at the Technical University Vienna.
He joined the Institut für Mikroelektronik in June 2003, where he
is currently working on his diploma thesis.
PHILIPP SCHWAHA studied electrical engineering at the
Technical University Vienna. He joined the Institute for Micro-
electronics in June 2004, where he is currently working on his
doctoral degree. His research activities include circuit and device
simulation, device modeling, and software development.
SIEGFRIED SELBERHERR received the doctoral degree in
technical sciences from the Technical University Vienna in 1981.
Since that time he has been with the Technical University Vienna
as professor. Dr. Selberherr has been holding the “venia docendi”
on “Computer-Aided Design” since 1984. As of 1988 he has been
chair professor of the Institut für Mikroelektronik. From 1998 to
2005 he served as Dean of the “Fakultät für Elektrotechnik und
Informationstechnik” at the Technical University Vienna. His cur-
rent topics of interest are modeling and simulation of problems for
microelectronics engineering.

492

