
A Performance Test Platform

R. Heinzl, G. Mach, P. Schwaha, and S. Selberherr

Institute for Microelectronics, TU Wien
Gußhausstraße 27-29/E360, A-1040 Vienna, Austria

E-mail: {heinzl|mach|schwaha|selberherr}@iue.tuwien.ac.at

KEYWORDS

Performance test, benchmark, graphical user interface, pro-
gramming languages, web-application, Linux, posix, Bash

ABSTRACT

We implemented a fully automated benchmarking system,
the performance test platform (PTP). It is developed with
special emphasis on flexibility and therefore uses library cen-
tric application design combining several orthogonal mod-
ules. The modules consist of a base of Bash shell scripts
and an orthogonal web front-end written in PHP. We thereby
ensure that no restrictions are imposed on the benchmarked
systems. Furthermore we show the platform’s application
and results obtained by benchmarking different algebraic
equation specification approaches.

INTRODUCTION AND MOTIVATION

We present the performance test platform (PTP), a fully au-
tomated benchmark system to consequently analyze compile-
time and run-time performance of different algorithms, pro-
gramming paradigms, or even complete applications. The
compiler attributes are fully parametrized, which allows the
use of different compilers and options on multiple hosts with
several operating systems. It is not only possible to pass vari-
ous options to the compiler, but it is also possible to pass dif-
ferent options to the newly compiled executable. The rapid
development of micro processors and the huge range of cur-
rently available processor types requires very complex tools
to analyze applications in order to optimize their run-time
performance. Additionally, compilers also undergo their own
evolution and different compilers introduce a new set of opti-
mization possibilities to control the new features of modern
micro processors with each new generation. The possibilities
of combining all of these switches and options is increasing
even more rapidly and results in a staggering amount of pos-
sibilities to choose from. A manual selection of settings to
obtain optimal performance is therefore not an efficient task
as even different types of applications require a different set
of options and switches.

A project was therefore initiated with the goal to determine
which compiler-options result in optimal code on different ar-
chitectures, operating systems, and from different program-
ming paradigms. During the development of a batch-job-
system using Bash shell scripts [12] the idea to extend this
to a complete performance test platform was born. Once a
system consisting of several shell scripts and a hierarchical
directory structure was developed, usability had to be in-

creased to make this system accessible on various platforms
without manual interaction. A database system, a graphi-
cal user interface, as well as graphical statistic modules have
therefore been developed.

THE DEVELOPED PLATFORM

The base of the developed system consists of a collection of
Bash shell scripts and an orthogonally implemented graphi-
cal web front-end in the dynamic web programming language
PHP [5], cf. Figure 1. Both are supplemented by a MySQL-
database [13] and GNU R [7], a statistical and graphical suite
used to process the results and create graphical output.

Figure 1: Overview of the performance test platform.

We chose a shell-script backend to ensure the possibility to
easily change parameters, templates and scripts manually or
by the graphical user interface. We thereby achieve a maxi-
mum of freedom and openness for a large variety of systems,
languages, compilers, and algorithms to test. The database
was implemented in MySQL, because it is widely available,
easy to use, and very stable when using InnoDB-engines
[15, 11] with foreign constraints. Using these features and a

483



graphical front-end such as phpMyAdmin have the possibility
to apply even complex changes (i.e. changing the constraints
or dependencies of tables) in an efficient and safe way.

We also implemented a graphical user interface module for
GNU R to finally obtain HTML pages. It provides the fa-
cilities to produce graphical output in the style of common
spreadsheet-applications from performance test results. The
templates used guarantee an easy way to modify the style of
the resulting figures.

We chose a web front-end written in PHP to control the test
platform for many reasons. First, we can use nearly every
system providing a browser to control the platform, second
we did not need to implement a separate GUI, and, finally,
the PHP language provides facilities to execute programs on
different systems. We can therefore use the web-front-end
with other underlying systems as well.

The most important feature of the base system is its mod-
ularity and the resulting exchangeability of modules. The
main modules can be used without the graphical front-end.
This is ensured by using a sophisticated directory structure
and small task specific shell scripts allowing modification or
substitution of single tasks in the benchmark system or sin-
gle configurations for one benchmark. The appearance and
style of the final figures can thereby be changed without any
modification of the core system itself.

The directory structure consists of a directory for each test.
This root directory then contains directories for configura-
tion files, source files, and templates, as well as directories
for additional files, e.g. input files, concerning the simula-
tion process and for each configuration, option, and host.
Figure 2 shows the directory tree of the test-directory.

Figure 2: The directory tree of the PTP.

The config directory contains all configuration files for a
job, where each test (different language, executable, or com-
piler) has its own configuration. The following table gives
an overview of some of the possible tags.

Tag Explanation

xxxARCHITECxxx architecture of the system
xxxLANGUAGExxx language of the tested program
xxxHOSTxxx space-separated list of hosts to use

for the tests

The template directory contains templates for Make-
files and time-measure scripts. The time-measure scripts
are invoked by the runonhost.sh script and measure
the compile time as well as the execution time. The
src directory contains the sources for all tests of this
job (different programs, compilers, and hosts). The
zzz * directories are named according to the used ar-
chitecture, the language, the compiler, and a unique ex-
ecutable number. These directories contain one sub-
directory per compiler-option-string. Each of these
directories contains one directory per host. There
are several files in these directories: makefile.conf

and measure.conf are the configuration files for the
Makefile and measure.sh script. Additionally, the
source files along with the resulting object files and ex-
ecutables and, after the tests have been run, the files
containing the test results are located here.
The simulation directory contains, beside a few
control files such as simulation.started and
simulation.ended, the status file simulation.status

and for each host the job lists and output files. The
simulation can be controlled by editing the host job
lists or the two control files.
After running the tests from the web-front-end, the docu
directory contains all tables, figures and a PHP-file, which
is included in the front-end-documentation. In this way
it is guaranteed, that the documentation is accessible
from the front-end in the typical style, but can also be
used without the front-end.
The shell-scripts mirror the procedure of the benchmark
test:

- First the directory structure is created and set up.

- The files are then distributed and the actual tests
are run.

- The final task is to document the results.

THE WEB-FRONT-END

PHP-Scripts control the basic layout, the login (see Fig-
ure 3), the connection to the database as well as the
report section, the control section, and the tutorial sec-
tion.
Authentication is performed against the login manage-
ment of the server (i.e. local accounts using PAM [1]
or network accounts using NIS [2]). Therefore no sep-
arate login-management nor accounts have to be pro-

484



Figure 3: Login to the performance test platform.

vided, but all users having valid logins at the server can
login to the platform out of the box. The biggest advan-
tage of this login management is its modularity, so even
advanced authentication systems such as kerberos [3]
can easily be incorporated. Cookies are used to avoid
outdated login sessions. The basic graphical layout of
the PTP is different for normal users and for admins,
respectively.
All reports concerning hosts, jobs and the platform can
be found in the report-section (’Berichte’). Access to
reports dealing with the platform is restricted to admins
only, all other reports are viewable by every user of the
platform.

Figure 4: List of hosts in report section.

Reports about the hosts (Figure 4) contain the names
of the hosts, their operating systems, the CPU type and
speed, and the amount of main memory. Information
on the availability of selected hosts which can be used
by the system for benchmarks is provided on a separate
page (see Figure 5).
Reports about the jobs contain the root-directory of the
job and its current status. Information about logins is
available in the platform report section.
All controls about hosts, jobs, and the platform can be
found in the control section (’Einstellungen’). A user
can change only the settings of his own jobs.

Figure 5: Overview of the availability of selected hosts.

Figure 6: Mask to add a configuration: the red parts are
mandatory.

The mask for adding configurations (Figure 6) refers to
the configuration tags shown earlier in this paper. It is
divided into several sections:

- The section ’Allgemeine Informationen’ deals with
the architecture and the language and the selection
of hosts that should be used.

485



- The ’Compiler’ section contains the name and ex-
ecutable of the compiler. Compiler option strings
and include paths can be specified optionally.

- The next section is called ’Linker’. If this entry is
empty, the compiler executable is assumed to be
used for linking as well. There are optional fields
for linker flags, library paths, and libraries to link
against.

- In the section ’Source-Files’ the names of the source
files along with the header files needed to compile
the program are specified.

- In the last section ’Make and Executable’ it is possi-
ble to specify the name of the make command and
the executable. Flags and switches for the make
command or the executable option strings can also
be entered here.

The important part of analyzing the results of the per-
formance test runs is managed by a wrapper tool to GNU

R. Different templates are used to interpret the corre-
sponding output of the single tasks obtained by the shell
scripts. Transformations of the output data, selections,
and finally illustration templates have been developed to
ease the complex process of intelligence collection. The
’Analyze Results’ mask is shown in Figure 7.

Figure 7: The ’Analyze Results’ mask.

The parameter for the abscissa and the set of curves can
be chosen for compile times as well as execute times. All
other parameters result in separate tables and figures
based on given and adjustable templates.

RESULTS OF A BENCHMARK

Using the performance test platform we compared dif-
ferent equation specification approaches, based on a
generic scientific simulation environment [9, 14, 10] and
the corresponding performance analysis [8]. Therefore
we analyzed several techniques which are available in
C++.

CPU type Clock speed RAM Compiler MFLOPS
P4 2.8 GHz 2 GB GCC 4.0.2 2310.9

Core Duo 2.4 GHz 2 GB GCC 4.3 8804.0
Athlon 64 2.2 GHz 2 GB GCC 4.1.2 10134.0

We compared the following equation specification meth-
ods:

- The expression template technique was used as de-
scribed in [4].

- The GNU g++ implementation of the valarray

data type was used as a test.

- Blitz++ [16]

- Naive C++ implementation

- The GSSE approach [9] based on topological traver-
sal and an equation concept based mostly on the
Boost Phoenix library [6].

The test is performed using a vector addition Af =
Ab +Ac +Ad, evaluated with different vector sizes. The
definitions of the corresponding data types are given in
the next code snippet:

typedef std : : va larray <double> Array t ;
typedef b l i t z : : Array<double ,1> Array t ;
typedef std : : vector<double> Array t ;

The next figures presents and compare the results ob-
tained by the different approaches. The y-axis is labeled
with operations per second. The vector addition is built
by three operations, two additions and one assignment.
Figure 8 shows the high runtime performance of an Intel
P4 microprocessor as long as the values are cached.

Figure 8: Comparison of functional specification on an Intel
P4 microprocessor.

Figure 9 presents the results for an Intel Core Duo mi-
croprocessor. The sudden drop in runtime performance
at certain vector lengths should be noted.

Figure 10 depicts the best benchmark results for an
AMD Athlon 64 microprocessor with AMD rating
3500+.

486



Figure 9: Comparison of functional specification on an Intel
Core Duo microprocessor.

Figure 10: Comparison of functional specification on an
AMD Athlon 64 microprocessor.

CONCLUSION

Based on a set of Bash shell scripts, a statistical anal-
ysis tool, and a comprehensive graphical user inter-
face, a performance test platform was developed to ease
the benchmarking processes. A completely automated
process chain is thereby obtained to analyze the per-
formance optimization possibilities of modern micro-
processor architectures and new compiler versions.

REFERENCES

[1] Pluggable Authentication Module (PAM), 1995. http://www.
kernel.org/pub/linux/libs/pam/.

[2] Network Information System (NIS), 2004. RFC 3898.

[3] Kerberos: The Network Authentication Protocol, 2007. http:
//web.mit.edu/kerberos/www/.

[4] D. Abrahams and A. Gurtovoy. C++ Template Metapro-
gramming: Concepts, Tools, and Techniques from Boost and
Beyond (C++ in Depth Series). Addison-Wesley Profes-
sional.

[5] Achour, Betz, Dovgal, Lopes, Olson, Richter, Seguy, Vrana,
et al. PHP Manual. http://www.php.net/manual/en/, 2006.

[6] Boost Phoenix 2. Boost Phoenix 2. Boost, 2006.
http://spirit.sourceforge.net/.

[7] R Foundation. The R Manuals.
http://cran.r-project.org/manuals.html, 2007.

[8] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser. Per-
formance Aspects of a DSEL for Scientific Computing with
C++. In Proc. of the POOSC Conf., pages 37–41, Nantes,
France, July 2006.

[9] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. A High
Performance Generic Scientific Simulation Environment. In
Proc. of the PARA Conf., page 61, Umea, Sweden, June
2006.

[10] R. Heinzl, M. Spevak, P. Schwaha, and S. Serlberherr. Per-
formance Analysis for High-Precision Interconnect Simula-
tion. In Proc. of the ESMC. Conf., pages 113–116, Toulouse,
France, 23-25. October 2006.

[11] A. Heuer and G. Saake. Datenbanken: Konzepte und
Sprachen. mitp, 2nd edition, 2000.

[12] M. Cooper. Advaced Bash Scripting Guide.
http://www.tldp.org/LDP/abs/html/, 2006.

[13] MySQL AB. MySQL 5.1 Reference Manual.
http://dev.mysql.com/doc/refman/5.1/en/index.html,
2006.

[14] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser. Advanced
Equation Processing for TCAD. In Proc. of the PARA Conf.,
page 64, Umea, Sweden, June 2006.

[15] H. Tuuri et al. The InnoDB Documentation.
http://www.innodb.com/support/documentation, 2007.

[16] T. L. Veldhuizen. Active Libraries: Rethinking the Roles of
Compilers and Libraries, in Proc.ISCOPE’98, Lecture Notes
in Computer Science. Springer-Verlag, 1998.

BIOGRAPHIES

RENÉ HEINZL studied electrical engineering at the Technische
Universität Wien. He joined the Institute for Microelectronics in
November 2003, where he finished his doctoral degree in Septem-
ber 2007. In April 2005 he achieved first place at the doctoral
competition at the EEICT in Brno. His research interests in-
clude computational science, programming paradigms, high per-
formance programming techniques, process simulation, solid mod-
eling, scientific visualization, and algebraic topology for TCAD.
GEORG MACH was born in Vienna, Austria, in 1979. He
studies electrical engineering at the Technische Universität Wien.
He joined the Institut für Mikroelektronik in June 2003, where he
is currently working on his diploma thesis.
PHILIPP SCHWAHA studied electrical engineering at the
Technische Universität Wien. He joined the Institute for Micro-
electronics in June 2004, where he is currently working on his
doctoral degree. His research activities include circuit and device
simulation, device modeling, and software development.
SIEGFRIED SELBERHERR received the doctoral degree in
technical sciences from the Technische Universität Wien in 1981.
Since that time he has been with the Technische Universität Wien
as professor. Dr. Selberherr has been holding the “venia docendi”
on “Computer-Aided Design” since 1984. As of 1988 he has been
chair professor of the Institut für Mikroelektronik. From 1998 to
2005 he served as Dean of the “Fakultät für Elektrotechnik und
Informationstechnik” at the Technische Universität Wien. His
current topics of interest are modeling and simulation of prob-
lems for microelectronics engineering.

487




